
SWAN

IMPLEMENTATION MANUAL

SWAN Cycle III version 41.51

SWAN IMPLEMENTATION MANUAL

by : The SWAN team

mail address : Delft University of Technology
Faculty of Civil Engineering and Geosciences
Environmental Fluid Mechanics Section
P.O. Box 5048
2600 GA Delft
The Netherlands

e-mail : m.zijlema@tudelft.nl
homepage : http://www.swan.tudelft.nl

Copyright (c) 1993-2024 Delft University of Technology.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is available at http://www.gnu.org/licenses/fdl.html#TOC1.

http://www.swan.tudelft.nl
http://www.gnu.org/licenses/fdl.html#TOC1

iv

Contents

1 Introduction 1

1.1 The material . 2

2 Use of patch files 7

3 Installation 9

3.1 Introduction . 9
3.2 Classic build instructions . 10

3.2.1 Configuring the build . 10
3.2.2 Building SWAN using GNU make 11
3.2.3 Building SWAN from scratch . 12
3.2.4 Building with MPI support . 16
3.2.5 Building with Metis support . 16
3.2.6 Building with netCDF support . 16

3.3 Building SWAN with CMake . 18
3.3.1 Build instructions . 18
3.3.2 Configuring the build . 19
3.3.3 Clean up the build files . 20

4 User dependent changes and the file swaninit 21

5 Run instructions 25

6 Testing SWAN 29

v

vi

Chapter 1

Introduction

This Implementation Manual is a part of the total material to implement the SWAN wave
model on your computer system. The total material consists of:

• the SWAN source code,

• the pre-built SWAN release for Windows,

• the User Manual,

• this Implementation Manual,

• the Scientific/technical documentation,

• the SWAN programming rules,

• utilities and

• some test cases.

All of the material can be found at the official SWAN homepage.

Since version 41.41, the SWAN source code is also hosted on GitLab and can be cloned
from this repository. For details see Section 3.3.

On the SWAN homepage, general information is given about the model functionalities,
physics and limitations of SWAN. Also, the modification history (or release notes) of SWAN
and information on support are provided.

After downloading the material, you may choose between

• direct usage of the pre-built SWAN for Windows and

• implementation of SWAN on your computer system.

1

https://swanmodel.sourceforge.io
https://gitlab.tudelft.nl/citg/wavemodels/swan

2 Chapter 1

If you want to use the pre-built SWAN please read Chapters 5 and 6 for further information.

For the purpose of implementation, you have access to the source code of SWAN and
additional files, e.g. for testing SWAN. Please read the copyright in this manual and in
the source code with respect to the terms of usage and distribution of SWAN. You are
permitted to implement SWAN on your computer system. However, for any use of the
SWAN source code in your environment, proper reference must be made to the origin of
the software.

Implementation involves the following steps:

1. Copying the source code from the SWAN homepage to the computer system on which
you want to run SWAN.

2. If necessary, applying patches for an upgrade of the source code due to e.g., bug fixes,
resolved issues, new features, etc.

3. Making a few adaptions in installation-dependent parts of the code.

4. Compiling and linking the source code to produce an executable of SWAN.

5. Testing of the built SWAN.

After the last step you should have the built SWAN ready for usage. Note that steps 3
and 4 can be carried out fully automatically.

1.1 The material

The source tarball swan4151.tar.gz contains the SWAN source code and consists of the
following files:

main program : swanmain.ftn
pre-processing routines : swanpre1.ftn

swanpre2.ftn
SwanBndStruc.ftn90

computational routines : swancom1.ftn
swancom2.ftn
swancom3.ftn
swancom4.ftn
swancom5.ftn

post-processing routines : swanout1.ftn
swanout2.ftn
SwanVTKWriteHeader.ftn90
SwanVTKWriteData.ftn90
SwanVTKPDataSets.ftn90

Introduction 3

service routines : swanser.ftn
SwanIntgratSpc.ftn90

routines for Bragg
scattering : SwanBraggScat.ftn90
routines for QCM : SwanQCM.ftn90
routines for ST6 package : SdsBabanin.ftn90
routines for support
parallel MPI runs : swanparll.ftn
routines for unstructured
grids : SwanReadGrid.ftn90

SwanReadADCGrid.ftn90
SwanReadTriangleGrid.ftn90
SwanReadEasymeshGrid.ftn90
SwanInitCompGrid.ftn90
SwanCheckGrid.ftn90
SwanCreateEdges.ftn90
SwanGridTopology.ftn90
SwanGridVert.ftn90
SwanGridCell.ftn90
SwanGridFace.ftn90
SwanPrintGridInfo.ftn90
SwanFindPoint.ftn90
SwanPointinMesh.ftn90
SwanBpntlist.ftn90
SwanPrepComp.ftn90
SwanVertlist.ftn90
SwanCompUnstruc.ftn90
SwanDispParm.ftn90
SwanPropvelX.ftn90
SwanSweepSel.ftn90
SwanPropvelS.ftn90
SwanTranspAc.ftn90
SwanTranspX.ftn90
SwanGradDepthorK.ftn90
SwanGradVel.ftn90
SwanDiffPar.ftn90
SwanGSECorr.ftn90
SwanInterpolatePoint.ftn90
SwanInterpolateAc.ftn90
SwanInterpolateOutput.ftn90
SwanConvAccur.ftn90
SwanConvStopc.ftn90
SwanThreadBounds.ftn90

4 Chapter 1

SwanFindObstacles.ftn90
SwanCrossObstacle.ftn90
SwanComputeForce.ftn90

routines for parallel,
unstructured grids : SwanParallel.ftn90
modules and subroutines
for netCDF : nctablemd.ftn90

agioncmd.ftn90
swn outnc.ftn90

couplers : couple2adcirc.ftn90
swan2coh.ftn90

routines for installation : ocpids.ftn
command reading routines : ocpcre.ftn
miscellaneous routines : ocpmix.ftn
general modules : swmod1.ftn

swmod2.ftn
modules for XNL : m constants.ftn90

m fileio.ftn90
serv xnl4v5.ftn90
mod xnl4v5.ftn90

modules for unstructured
grids : SwanGriddata.ftn90

SwanGridobjects.ftn90
SwanCompdata.ftn90

modules for spectral
partitioning : SwanSpectPart.ftn
routines for the fast
Fourier transform : fftpack51.ftn90

The SWAN source code is written in Fortran 90. Some routines are written in fixed form
and depending on your system, the extension may be for or f. Other routines are written
in free form and are indicated by extension f90. The conversion from ftn or ftn90 to one
of these extensions can be done automatically or manually; see Chapter 3.

You are allow to make changes in the source code of SWAN, but Delft University of
Technology will not support modified versions of SWAN. If you want your modifications to
be implemented in the authorized version of SWAN (the version on the SWAN homepage),
you need to submit these changes to the SWAN team (e-mail: m.zijlema@tudelft.nl).

As a part of the package, fftpack51 is the Fast Fourier Transform library translated to
Fortran 90 by John Burkardt of Florida State University.

The SWAN source code is additionally accompanied by the following files:

https://people.sc.fsu.edu/~jburkardt/f_src/fftpack51/fftpack51.html

Introduction 5

installation procedures : INSTALL.README
Makefile
macros.inc
which.cmd
platform.pl
switch.pl

run procedures : SWANRUN.README
swanrun
swanrun.bat

machinefile for parallel
MPI runs : machinefile
for concatenation of
multiple hotfiles : swanhcat.ftn

hcat.nml
edit file : swan.edt
Matlab scripts for
unstructured grids : plotunswan.m

plotgrid.m

On the SWAN homepage, you also find some test cases with some output files for making a
configuration test of SWAN on your computer. You may compare your results with those
in the provided output files. See Chapter 6 for further details.

6 Chapter 1

Chapter 2

Use of patch files

Between releases of authorised SWAN versions, it is possible that bug fixes or new features
are published on the SWAN homepage. These are provided by patch files that can be
downloaded from the website. Typically, a patch can be installed on top of the existing
source code. Patches are indicated by a link to patchfile. The names refer to the current
version number supplemented with letter codes. The first will be coded ’A’ (i.e. 41.51.A),
the second will be coded ’B’, the third will be coded ’C’, etc. The version number in the
resulting output files will be updated to 41.51ABC, indicating the implemented patches.

To use a patch file, follow the next instructions:

1. download the file (right-click the file and choose save link as)

2. place it in the directory where the source code of SWAN is located

3. execute patch -p0 < patchfile

After applying a patch or patches, you need to recompile the SWAN source code.

It is important to download the patch and not cut and paste it from the display of your web
browser. The reason for this is that some patches may contain tabs, and most browsers
will not preserve the tabs when they display the file. Copying and pasting that text will
cause the patch to fail because the tabs would not be found. If you have trouble with
patch, you can look at the patch file itself.

Note to Linux/UNIX users: the downloaded patch files are MS-DOS ASCII files and
contain carriage return (CR) characters. To convert these files to UNIX format, use the
command dos2unix. Alternatively, execute cat 41.51.[A-C] | tr -d ’\r’ | patch

that apply the patch files 41.51.A to 41.51.C to the SWAN source code at once after which
the conversion is carried out.

Note to Windows users: patch is a UNIX command. Download the patch program from
the SWAN website, which is appropriate for Windows operating system.

7

8 Chapter 2

Chapter 3

Installation

3.1 Introduction

SWAN can be installed on various architectures, including laptops and supercomputers.
The portability of the SWAN source code is guaranteed by the use of standard ANSI For-
tran 90. (See also the manual Programming rules.) Hence, virtually all Fortran compilers
can be used for installing SWAN. It should be noted that there are two Fortran commands
used in the source code of SWAN (v41.41+) which were introduced in later versions of
Fortran: stream I/O (Fortran 2003 standard) and execution OS command line (Fortran
2008 standard). They are, however, supported by currently maintained Fortran compilers,
including gfortran and Intel® Fortran.

The SWAN source code also supports parallelization, which enables a considerable reduc-
tion in the wall-clock time for relatively large CPU-demanding calculations. Two parallel-
ization strategies are available:

• The computational kernel of SWAN contains a number of OpenMP compiler dir-
ectives, so that users can optionally run SWAN on a cluster or laptop with multi
shared-memory processors.

• A message passing modelling is employed based on the Message Passing Interface
(MPI) standard that enables communication between independent processors. Hence,
users can optionally run SWAN on a Linux cluster containing memory-distributed
nodes.

The SWAN software can be build in the usual way via GNU make or from scratch. This
building process is explained in Section 3.2. However, since version 41.41, the option to
install SWAN using CMake is supported and is elaborated in Section 3.3.

9

10 Chapter 3

3.2 Classic build instructions

3.2.1 Configuring the build

The material on the SWAN website provides a Makefile and two Perl scripts (platform.pl
and switch.pl) that enables the user or developer to install SWAN on the computer in
a proper manner. For this, the following platforms, operating systems and compilers are
supported (and tested):

platform OS F90 compiler

Intel/AMD desktop/laptop Linux gfortran
Intel Core desktop/laptop Linux Intel®
Intel Xeon desktop/laptop Linux Intel®
x86-64 processor-based system Linux Portland Group
Intel/AMD desktop/laptop Linux Lahey
Intel Core desktop/laptop MS Windows Intel®
Intel Xeon desktop/laptop MS Windows Intel®
Intel/AMD desktop/laptop MS Windows Lahey
MacBook macOS gfortran
MacBook macOS Intel®
SGI Origin 3000 (Silicon Graphics) IRIX SGI
IBM SP AIX IBM
Compaq True 64 Alpha (DEC ALFA) OSF1 Compaq
Sun SPARC Solaris Sun
PA-RISC (HP 9000 series 700/800) HP-UX v11 HP
IBM Power6 (pSeries 575) Linux IBM
Power Mac G4 Mac OS X IBM

If your computer and available compiler is mentioned in the table, you may consult Section
3.2.2 for a complete build of the software without making any modifications. If desired,
you may install SWAN manually; see Section 3.2.3.

Note that for a successful installation, a Perl package must be available on your computer.
Usually, it is available for macOS, Linux and a UNIX-like operating system. Check it by
typing perl -v. You can download Perl for MS Windows from Strawberry Perl. The Perl
version should be at least 5.0.0 or higher!

Before starting the build process, the user may first decide how to run the SWAN program.
There are three run modes:

• serial runs,

• parallel runs on shared-memory systems or

• parallel runs on distributed-memory machines.

https://strawberryperl.com

Installation 11

For stationary and small-scale computations, it may be sufficient to choose the serial mode,
i.e. one SWAN program running on one processor. However, for relatively large CPU-
demanding calculations (e.g., instationary or nesting ones), two ways of parallelism for
reducing the turn-around time are available:

• The SWAN code contains a number of so-called OpenMP directives that enables the
compiler to generate multi-threaded code on a shared-memory computer. For this,
you need a Fortran 90 compiler supporting OpenMP. The performance is good for
a limited number of threads. This type of parallelism can be used e.g., on laptops
containing multi-core processors.

• If the user want to run SWAN on a relative large number of processors, a message
passing model is a good alternative. It is based on independent processors which do
not share any memory but are connected via an interconnection network (e.g. cluster
of Linux PC’s connected via fast Ethernet switches). The implementation is based
on the Message Passing Interface (MPI) standard (e.g., MPICH and OpenMPI).
The SWAN code contains a set of generic subroutines that call a number of MPI
routines, meant for local data exchange, gathering data, global reductions, etc. This
technique is beneficial for larger simulations only, such that the communication times
are relatively small compared to the computing times.

• For a proper installation of MPI-based application on Windows, please consult Sec-
tion 3.2.4.

3.2.2 Building SWAN using GNU make

Carry out the following steps for building SWAN on your computer.

1. An include file containing some machine-dependent macros must be created first.
This file is called macros.inc and can be created by typing

make config

2. Now, SWAN can be built for serial or parallel mode, as follows:

mode instruction

serial make ser

parallel, shared make omp

parallel, distributed make mpi

12 Chapter 3

IMPORTANT NOTES:

• To Windows users:

– To execute the above instructions, just open a command prompt.

– To build SWAN on Windows platforms by means of a Makefile you need the
command-line utility Nmake, which is provided by the Microsoft® Visual Studio.

– This setup does support OpenMP for Windows systems, if Intel® Fortran Compiler
is provided.

– This installation currently supports Intel® MPI library for Windows. See Sec-
tion 3.2.4 for further information.

• One of the commands make ser, make omp and make mpi must be preceded once by
make config.

• If desirable, you may clean up the generated object files and modules by typing
make clean. If you want to delete any stray files from a previous compilation, just
type make clobber.

• If you are unable to install SWAN using the Makefile and Perl scripts for whatever
reason, see Section 3.2.3 that includes instructions for a custom installation.

3.2.3 Building SWAN from scratch

It is recommended to consult Section 3.2.2 for a complete build of SWAN on your computer.
However, if you want to build SWAN on your system from scratch, then please follow the
instructions below.

Modifying the source code

To compile SWAN on your computer system properly, some subroutines should be adapted
first depending on the operating system, use of compilers and the wish to use MPI for
parallel runs. This can be done by removing the switches started with ’ !’ followed by
an indentifiable prefix in the first 3 or 4 columns of the subroutine. A Perl script called
switch.pl is provided in the material that enables the user to quickly select the switches
to be removed. This script can be used as follows:

perl switch.pl [-dos] [-unix] [-f95] [-jac] [-mpi] [-metis] [-cray] [-sgi]

[-cvis] [-timg] [-matl4] [-impi] [-adcirc] [-netcdf] *.ftn

where the options are all optionally. The meaning of these options are as follows.

-dos, -unix Depending on the operating system, both the TAB and directory separator character
must have a proper value (see also Chapter 4). This can be done by removing the
switch !DOS or !UNIX, for Windows and Linux/UNIX platforms, respectively, in

https://www.intel.com/content/www/us/en/developer/tools/oneapi/fortran-compiler.html#gs.1620vb

Installation 13

the subroutines OCPINI (in ocpids.ftn) and TXPBLA (in swanser.ftn). For other
operating system (e.g., Macintosh), you should change the values of the following
variables manually: DIRCH1, DIRCH2 (in OCPINI), TABC (in OCPINI) and ITABVL (in
TXPBLA).

-f95 If you have a Fortran 95 compiler or a Fortran 90 compiler that supports Fortran 95
features, it might be useful to activate the CPU TIME statement in the subroutines
SWTSTA and SWTSTO (in swanser.ftn) by removing the switch !F95 meant for the
detailed timings of several parts of the SWAN calculation. Note that this can be
obtained with the command TEST by setting itest=1 in your command file.

-jac In case of parallel runs on distributed memory systems an efficient algorithm is re-
quired to parallelize the implicit propagation operator. The simplest strategy consists
in treating the data on subdomain interfaces explicitly, which in mathematical terms
amounts to using a block Jacobi approximation of the implicit operator. To minim-
ize the communication volume, a recursive application of alternately horizontal and
vertical stripwise partitioning is carried out. This strategy possess a high degree of
parallelism, but may lead to a certain degradation of convergence properties. An-
other strategy is the block wavefront approach. This approach does not alter the
order of computing operations of the sequential algorithm and thus preserving the
convergence properties, but reduces parallel efficiency to a lesser extent because of
the serial start-up and shut-down phases. The user is advised to choose the block
Jacobi approach in case of non- or quasi-stationary SWAN simulations, otherwise the
block wavefront method is preferable.

By default, the block wavefront approach will be applied and so the switch !WFR
will be removed automatically. However, if the user want to apply the block Jacobi
method then the switch !JAC must be removed while the switch !WFR should not
be removed. This can be realized with the option -jac. Note that this option must
be followed by the next option -mpi.

-mpi For the proper use of MPI, you must remove the switch !MPI at several places in the
file swanparll.ftn, swancom1.ftn and swmod1.ftn.

-metis To enable to partition the unstructured mesh, the switch !METIS must be removed
at several places in different files.

-cray, -sgi If you use a Cray or SGI Fortran 90 compiler, the subroutines OCPINI (in ocpids.ftn)
and FOR (in ocpmix.ftn) should be adapted by removing the switch !/Cray or !/SGI
since, these compilers cannot read/write lines longer than 256 characters by default.
By means of the option RECL in the OPEN statement sufficiently long lines can be
read/write by these compilers.

-cvis The same subroutines OCPINI and FOR need also to be adapted when the Compaq
Visual Fortran compiler is used in case of a parallel MPI run. Windows systems have

14 Chapter 3

a well-known problem of the inability of opening a file by multiple SWAN executables.
This can be remedied by using the option SHARED in the OPEN statement for shared
access. For this, just remove the switch !CVIS.

-timg If the user want to print the timings (both wall-clock and CPU times in seconds)
of different processes within SWAN then remove the switch !TIMG. Otherwise, no
timings will be keeped up and subsequently printed in the PRINT file.

-matl4 By default, the created binary Matlab files are of Level 5 MAT-File format and are
thus compatible with MATLAB version 5 and up. In this case the switch !MatL5
must be removed. However, some machines do not support a 1-byte unit for the
record length (e.g. IBM Power6). At those computers, the binary Matlab files must
be formatted of Level 4. In this case the switch !MatL4 must be removed while
the switch !MatL5 should not be removed. Level 4 MAT-files are compatible with
MATLAB versions 4 and earlier. However, they can be read with the later versions
of MATLAB.

-impi Some Fortran compilers do not support USE MPI statement and therefore, the module
MPI in swmod1.ftn must be included by removing the switch !/impi.

-adcirc To enable to do coupled ADCIRC+SWAN simulation, the switch !ADC must be
removed at several places in different files. However, for a standalone SWAN sim-
ulation, the switch !NADC must be removed while the switch !ADC should not be
removed.

-netcdf For the proper use of netCDF, you must remove the switch !NCF at several places
in different files.

For example, you work on a Linux cluster where MPI has been installed and use the Intel®
Fortran compiler (that can handle Fortran 95 statements), then type the following:

perl switch.pl -unix -f95 -mpi *.ftn *.ftn90

Note that due to the option -unix the extension ftn is automatically changed into f and
ftn90 into f90. Also note that the block wavefront algorithm is chosen for parallel runs.

Compiling and linking SWAN source code

After the necessary modifications are made as described in the previous section, the source
code is ready for compilation. All source code is written in Fortran 90 so you must have
a Fortran 90 compiler in order to compile SWAN. The source code cannot be compiled
with a Fortran 77 compiler. If you intended to use MPI for parallel runs, you must use
the command mpif90 (or mpiifort in case of the Intel® compiler) instead of the original
compiler command.

The SWAN source code complies with the ANSI Fortran 90 standard, except for a few

Installation 15

cases, where the limit of 19 continuation lines is violated. We are currently not aware of
any compiler that cannot deal with this violation of the ANSI standard.

When compiling SWAN you should check that the compiler allocates the same amount of
memory for all INTEGERS, REAL and LOGICALS. Usually, for these variables 4 bytes are alloc-
ated, on supercomputers (vector or parallel), however, this sometimes is 8 bytes. When a
compiler allocates 8 bytes for a REAL and 4 bytes for an INTEGER, for example, SWAN will
not run correctly.

Furthermore, SWAN can generate binary MATLAB files on request, which are unformat-
ted. Some compilers, e.g. Intel® Fortran, measured record length in 4-byte or longword
units and as a consequence, these unformatted files cannot be loaded in MATLAB. Hence,
in such as case a compiler option is needed to request 1-byte units, e.g. for Intel® Fortran
this is /assume:byterecl (Windows) or -assume byterecl (Linux/UNIX).

The modules must be compiled first. Several subroutines use these modules. These sub-
routines need the compiled versions of the modules before they can be compiled. You can
find here below the complete list of modules in the proper order.

• swmod1.f, swmod2.f

• SwanSpectPart.f90

• m constants.f90, m fileio.f90, serv xnl4v5.f90, mod xnl4v5.f90

• SwanGriddata.f90, SwanGridobjects.f90, SwanCompdata.f90

• SwanParallel.f90

• SdsBabanin.f90

• SwanIEM.f90

• SwanBraggScat.f90

• SwanQCM.f90

Linking should be done without any options nor using shared libraries (e.g. math or NAG).
It is recommended to rename the executable to swan.exe after linking.

Referring to the previous example, compilation and linking may be done as follows:

mpif90 <list of modules> ocp*.f swan*.f Swan*.f90 -o swan.exe

16 Chapter 3

3.2.4 Building with MPI support

SWAN can be built with support for MPI. It is assumed that MPI has been installed
already in the Linux environment. However, this is probably not the case for Windows.
At any rate, the Intel® MPI library may be employed to build an MPI application. This
library is included in the Intel® oneAPI HPC Toolkit. In this respect, the following steps
need to be made first

• make sure that the variables INCS MPI and LIBS MPI in the file macros.inc are
emptied, and

• change the value of the variable F90 MPI by replacing ifort by mpiifort.

Build SWAN by executing the command make mpi.

3.2.5 Building with Metis support

SWAN 41.45A+ can be compiled with support for Metis to partition an unstructured
mesh so that simulations can be carried out on distributed-memory machines1. For this,
an MPI implementation is still required; see Section 3.2.4. The actual mesh partitioning
implemented in SWAN is the multilevel k-way method. For details see the Metis manual.

For a proper building, the Metis software package must be installed first on your machine.
Installation details can be found at https://github.com/KarypisLab/METIS. Make sure
that both C++ constants IDXTYPEWIDTH and REALTYPEWIDTH in header file metis.h) have
been set to 32. Note that you also need to install the GKlib library. It is recommended to
install the lastest version of Metis; high-resolution simulations with the unstructured mesh
version of SWAN have been tested with Metis 5.2.1.

Carry out the following steps.

1. Define the variable METISROOT in file macros.inc to refer to the Metis root directory
(e.g. METISROOT=/opt/metis in case of Linux/macOS or METISROOT=BINARY DIR in
case of Windows).

2. Build SWAN as usual (e.g. make mpi); see Section 3.2.2.

3.2.6 Building with netCDF support

SWAN 40.91A+ contains extensions that provide netCDF output of spectra and maps of
several wave parameters. Carry out the following steps.

1. Make sure that netCDF 4.5.x or greater is compiled and available on your system. For
details, consult netCDF downloads. The Fortran interface must have been enabled
when netCDF was built.

1Building with parallel libraries from the ADCIRC suite is no longer necessary.

https://www.intel.com/content/www/us/en/developer/tools/oneapi/hpc-toolkit-download.html
https://github.com/KarypisLab/METIS/tree/master/manual
https://github.com/KarypisLab/METIS
https://github.com/KarypisLab/GKlib
https://www.unidata.ucar.edu/downloads/netcdf/index.jsp

Installation 17

2. Define the variable NETCDFROOT in file macros.inc to point to the netCDF root dir-
ectory (e.g. NETCDFROOT=/usr/local/netcdf in case of Linux or
NETCDFROOT=C:\PROGRAM FILES\netcdf in case of Windows). This enables to com-
pile netCDF I/O into SWAN.

3. Build SWAN as usual (e.g. make mpi); see Section 3.2.2.

18 Chapter 3

3.3 Building SWAN with CMake

CMake is a cross-platform build system that creates native build files (for use with a
generator GNU Make, Nmake or Ninja) for command line builds or project files for an IDE
(e.g. Visual Studio). CMake makes use of configuration files that control the build process.
We recommend to use CMake 3.12+ for building SWAN. There are installers available for
Windows, Linux and macOS. See the download page for installation instructions.

Ninja is one of the many build generators to create executable files and libraries from
source code. The way it works is very similar to GNU make; for example, it does not
rebuild things that are already up to date. We recommend Ninja because it is faster than
GNU make. Ninja can be downloaded from its git repository.

3.3.1 Build instructions

For a proper build, the release code including the required CMake files can be downloaded
or cloned from the SWAN git repository hosted on TU Delft GitLab.

Next, carry out the following steps.

1. clone the repository and navigate to the top level source directory

git clone https://gitlab.tudelft.nl/citg/wavemodels/swan.git && cd swan

2. create the build directory

At the top of SWAN source directory execute the following commands

mkdir build

cd build

This step is required to perform an out-of-source build with CMake, that is, build files will
not be created in the /swan/src directory.

3. build the software

Two CMake configuration files are provided as required for the build. They are placed in the
following source directories: ./swan/CMakeLists.txt and ./swan/src/CMakeLists.txt.
The following two CMake commands should suffice to build SWAN

cmake .. -G Ninja

cmake --build .

The first command refers to the source directory where the main configuration file is
invoked. The second command carries out the building in the build directory. The package
is actually built by invoking Ninja.

4. install the package

https://cmake.org/
https://cmake.org/download/
https://ninja-build.org/
https://github.com/ninja-build/ninja/releases
https://gitlab.tudelft.nl/citg/wavemodels/swan
https://gitlab.tudelft.nl/public/

Installation 19

cmake --install .

The default install directory is /usr/local/swan (Unix-like operating systems, including
macOS) or C:\PROGRAM FILES\swan (Windows). Instead, you may install SWAN in any
other user-defined directory, as follows

cmake --install . --prefix /your/defined/directory

After installation a number of subdirectories are created. The executables end up in the
/bin directory, the library files in /lib, and the module files in /mod. Additionally, the
/doc folder contains the pdf documents, the folder /tools consists of some useful scripts
and the /misc directory contains all of the files that do not fit in other folders (e.g., a
machinefile and the edit file swan.edt).

Please note that the installation can be skipped (though not recommended). Executables
and libraries are then located in subdirectories of the build directory.

3.3.2 Configuring the build

The build can be (re)configured by passing one or more options to the CMake command
with prefix -D. A typical command line looks like

cmake .. -D<option>=<value>

where <value> is a string or a boolean, depending on the specified option. The table below
provides an overview of the non-required options that can be used.

option description default value

CMAKE INSTALL PREFIX user-defined installation path /usr/local/swan

CMAKE PREFIX PATH semicolon-separated list of library paths empty
CMAKE Fortran COMPILER full path to the Fortran compiler determined by CMake

MPI enable build with MPI OFF

OPENMP enable build with OpenMP OFF

METIS enable build with Metis OFF

NETCDF enable build with netCDF OFF

CMAKE VERBOSE MAKEFILE provide verbose output of the build OFF

For example, the following commands

cmake .. -GNinja -DNETCDF=ON -DMPI=ON

cmake --build .

will configure SWAN to be built created by Ninja that supports netCDF output and parallel
computing using the MPI paradigm. Note that CMake will check the availability of MPI
and netCDF libraries within your environment. Also note that netCDF libraries might be
installed in a custom directory (e.g., /home/your/name/netcdf), which must then be a
priori specified on the command line as follows:

20 Chapter 3

export NetCDF_ROOT=/path/to/netcdf/root/directory

or

cmake .. -DCMAKE_PREFIX_PATH=/path/to/netcdf/directory

so that CMake can find the libraries. The same holds for Metis libraries, as follows:

export Metis_ROOT=/path/to/metis/root/directory

or

cmake .. -DCMAKE_PREFIX_PATH=/path/to/metis/directory

Note: to define a path list with more than one prefixes use a semicolon as a separator.

The system default Fortran compiler (e.g., f77, g95) can be overwritten as follows

cmake .. -DCMAKE_Fortran_COMPILER=/path/to/desired/compiler

Finally, if CMake fails to configure your project, then execute

cmake .. -DCMAKE_VERBOSE_MAKEFILE=ON

which will generate detailed information that may provide some indications to debug the
build process.

3.3.3 Clean up the build files

To remove the build directory and all files that have been created after running cmake

--build ., run at the top level of your project the following command:

cmake -P clobber.cmake

(The -P argument passed to CMake will execute a script <filename>.cmake.)

Chapter 4

User dependent changes and the file

swaninit

SWAN allows you to customize the input and the output to the wishes of your department,
company or institute or yourself. This can be done by changing the settings in the ini-
tialisation file swaninit, which is created during the first time SWAN is executed on your
computer system. The changes in swaninit only affect the runs executed in the directory
that contains that file.

A typical initialisation file swaninit may look like:

4 version of initialisation file

Delft University of Technology name of institute

3 command file ref. number

INPUT command file name

4 print file ref. number

PRINT print file name

4 test file ref. number

test file name

6 screen ref. number

99999 highest file ref. number

$ comment identifier

[TAB] TAB character

\ dir sep char in input file

/ dir sep char replacing previous one

1 default time coding option

100 speed of processor 1

100 speed of processor 2

100 speed of processor 3

100 speed of processor 4

21

22 Chapter 4

Explanation:

• The version number of the initialisation file is included in the file so that SWAN can
verify whether the file it reads is a valid initialisation file. The current version is 4.

• The initialisation file provides a character string containing the name of the institute
that may carry out the computations or modifying the source code. You may assign
it to the name of your institute instead of Delft University of Technology, which
is the present value.

• The standard input file and standard print file are usually named INPUT and PRINT,
respectively. You may rename these files, if appropriate.

• The unit reference numbers for the input and print files are set to 3 and 4, respectively.
If necessary, you can change these numbers into the standard input and output unit
numbers for your installation. Another unit reference number is foreseen for output
to screen and it set to 6. This is useful if print output is lost due to abnormal end of
the program, while information about the reason is expected to be in the print file.
There is also a unit number for a separate test print file. In the version that you
downloaded from SWAN homepage, this is equal to that of the print file so that test
output will appear on the same file as the standard print output.

• The comment identifier to be used in the command file is usually ’$’, but on some
computer system this may be inappropriate because a line beginning with ’$’ is inter-
preted as a command for the corresponding operating system (e.g., VAX systems).
If necessary, change to ’ !’.

• To insert [TAB] in the initialisation file, just use the TAB key on your keyboard.

• Depending on the operating system, the first directory separation character in swaninit,
as used in the input file, may be replaced by the second one, if appropriate.

• Date and time can be read and written according to various options. The following
options are available:

1. 19870530.153000 (ISO-notation)

2. 30-May-87 15:30:00

3. 05/30/87 15:30:00

4. 15:30:00

5. 87/05/30 15:30:00

6. 8705301530 (WAM-equivalence)

Note that the ISO-notation has no millenium problem, therefore the ISO-notation
is recommended. In case of other options, the range of valid dates is in between
January 1, 1911 and December 31, 2010 (both inclusive).

User dependent changes and the file swaninit 23

• In case of a parallel MPI run at the machine having a number of independent pro-
cessors, it is important to assign subdomains representing appropriate amounts of
work to each processor. Usually, this refers to an equal number of grid points per
subdomain. However, if the computer has processors which are not all equally fast
(a so-called heterogeneous machine), then the sizes of the subdomains depend on the
speed of the processors. Faster processors should deal with more grid points than
slower ones. Therefore, if necessary, a list of non-default processor speeds is provided.
The given speeds are in % of default = 100%. As an illustrating example, we have
two PC’s connected via an Ethernet switch of which the first one is 1.5 times faster
than the second one. The list would be

150 speed of processor 1

100 speed of processor 2

Based on this list, SWAN will automatically distribute the total number of active
grid points over two subdomains in an appropriate manner. Referring to the above
example, with 1000 active points, the first and second subdomains will contain 600
and 400 grid points, respectively.

24 Chapter 4

Chapter 5

Run instructions

In this chapter it is assumed that you have a built SWAN available on your computer,
either after installation as described in Chapter 3, or downloaded from the SWAN website
(for Windows).

IMPORTANT NOTE:

The pre-built SWAN for Windows, available at the SWAN website, has been compiled
using the Intel® Fortran Compiler Classic (as part of Intel® oneAPI HPC Toolkit)
and is linked to DLL libraries. Therefore you may run into problems when attempt-
ing to run SWAN on your Windows computer, unless you have the Microsoft®
Visual Studio installed on your system. At any rate, you will need to run/install the
Intel® Fortran Compiler Runtime for Windows. You need only the latest version;
it will work with older compiler versions.

Before running SWAN you must first complete a command file. Consult the SWAN User
Manual how to specify the various settings and instructions to SWAN concerning the
(input) grids, boundary conditions, physics, numerics and output. To help you in editing a
command file for SWAN input, the file swan.edt is provided which contains the complete
set of commands.

After completing the command file, you may run SWAN. Two command-line utilities are
provided among the source code, one for running SWAN on the Windows platform, called
swanrun.bat, and one for running SWAN on the Linux/UNIX platform, called swanrun.
Basically, the run procedure carries out the following actions:

• Copy the command file with extension swn to INPUT (assuming INPUT is the standard
file name for command input, see Chapter 4).

• Run SWAN.

• Copy the file PRINT (assuming PRINT is the standard file name for print output, see
Chapter 4) to a file which name equals the command file with extension prt.

25

https://swanmodel.sourceforge.io/download/download.htm
https://www.intel.com/content/www/us/en/developer/tools/oneapi/fortran-compiler.html#gs.1620vb
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html#runtime

26 Chapter 5

On other operating system a similar procedure can be followed. For parallel MPI runs, the
program mpirun or mpiexec may be needed instead (usually provided in an MPI distribu-
tion).

Before calling the run procedure, the environment variable PATH need to be adapted by
including the pathname of the directory where swan.exe can be found. In case of Win-
dows, this pathname can be specified through the setting Environment Variables. (Hit the
Window key plus R to get command prompt. Then type sysdm.cpl, go to Advanced and
select Environment Variables. Note that you must be an administrator in order to modify
an environment variable.) In case of Linux or UNIX running the bash shell (sh or ksh),
the environment variable PATH may be changed as follows:

export PATH=${PATH}:/usr/local/swan

if /usr/local/swan is the directory where the executable swan.exe is resided. In case of
the C shell (csh), use the following command:

setenv PATH ${PATH}:/usr/local/swan

If appropriate, you also need to add the directory path where the bin directory of MPI is
resided to PATH to have access to the command mpirun or mpiexec.

You may also specify the number of threads to be used during execution of the multi-
threaded implementation of SWAN on multiprocessor systems. The environment variable
for this is OMP NUM THREADS and can be set like

export OMP_NUM_THREADS=4

or

setenv OMP_NUM_THREADS 4

or, in case of Windows,

OMP_NUM_THREADS = 4

When dynamic adjustment of the number of threads is enabled, the value given in
OMP NUM THREADS represents the maximum number of threads allowed.

The provided run utilities enable the user to properly and easily run SWAN both serial
as well as parallel (MPI or OpenMP). Note that for parallel MPI runs, the executable
swan.exe should be accessible by copying it to all the multiple machines or by placing
it in a shared directory. When running the SWAN program, the user must specify the
name of the command file. However, it is assumed that the extension of this file is swn.
Note that contrary to Linux/UNIX, Windows does not distinguish between lowercase and
uppercase characters in filenames. Next, the user may also indicate whether the run is
serial or parallel. In case of Windows, use the run procedure swanrun.bat from a command
prompt:

Run instructions 27

swanrun filename [nprocs]

where filename is the name of your command file without extension (assuming it is swn)
and nprocs indicates how many processes need to be launched for a parallel MPI run
(do not type the brackets; they just indicate that the parameter nprocs is optional). By
default, nprocs = 1.

The command line for the UNIX script swanrun is as follows:

./swanrun -input filename [-omp n | -mpi n]

where filename is the name of your command file without extension. Note that the script
swanrun need to be made executable first, as follows:

chmod +rx ./swanrun

The parameter -omp n specifies a parallel run on n cores using OpenMP. Note that the
UNIX script will set OMP NUM THREADS to n. The parameter -mpi n specifies a parallel run
on n processors using MPI. The parameter -input is obliged, whereas the parameters
-omp n and -mpi n can be omitted (default: n = 1). To redirect screen output to a file,
use the sign >. Use an ampersand to run SWAN in the background. An example:

./swanrun -input f31har01 -omp 4 > swanout &

For a parallel MPI run, you may also need a machinefile that contains the names of
the nodes in your parallel environment. Put one node per line in the file. Lines starting
with the # character are comment lines. You can specify a number after the node name
to indicate how many cores to launch on the node. This is useful e.g., for multi-core
processors. The run procedure will cycle through this list until all the requested processes
are launched. Example of such a file may look like:

here, eight processes will be launched

node1

node2:2

node4

node7:4

Note that for Windows platforms, a space should be used instead of a colon as the separ-
ation character in the machinefile.

SWAN will generate a number of output files:

• A print file with the name PRINT that can be renamed by the user with a batch (DOS)
or script (UNIX) file, e.g. with the provided run procedures. For parallel MPI runs,
however, a sequence of PRINT files will be generated (PRINT-001, PRINT-002, etc.)
depending on the number of processors. The print file(s) contain(s) the echo of the
input, information concerning the iteration process, possible errors, timings, etc.

28 Chapter 5

• Numerical output (such as table, spectra and block output) appearing in files with
user provided names.

• A file called Errfile (or renamed by the run procedures as well as more than one
file in case of parallel MPI runs) containing the error messages is created only when
SWAN produces error messages. Existence of this file is an indication to study the
results with more care.

• A file called ERRPTS (or renamed by the run procedures as well as more than one
file in case of parallel MPI runs) containing the grid-points, where specific errors
occured during the calculation, such as non-convergence of an iterative matrix-solver.
Existence of this file is an indication to study the spectrum in that grid-point with
more care.

If indicated by the user, a single or multiple hotfiles will be generated depending on the
number of processors, i.e. the number of hotfiles equals the number of processors (see the
User Manual). Restarting a (parallel MPI) run can be either from a single (concatenated)
hotfile or from multiple hotfiles. In the latter case, the number of processors must be equal
to the number of generated hotfiles. If appropriate, the single hotfile can be created from
a set of multiple hotfiles using the program hcat.exe as available from SWAN version
40.51A. This executable is generated from the Fortran program swanhcat.ftn. A self-
contained input file hcat.nml is provided in the SWAN package. This file contains, e.g.
the (basis) name of the hotfile. To concatenate the multiple hotfiles into a single hotfile
just execute hcat.exe.

Chapter 6

Testing SWAN

The SWAN package consists of one executable file (swan.exe), a command file (swan.edt)
and a run procedure (swanrun.bat or swanrun). The executable for Windows can be
obtained from the SWAN website, but see Chapter 5 for further details. The input and
output to a number of test problems is provided on the SWAN homepage. The files with
extension swn are the command files for these tests; the files with extension bot are the
bottom files for these tests, etc. This input can be used to make a configuration test of
SWAN on your computer. Compare the results with those in the provided output files.
Note that the results need not to be identical up to the last digit.

To run the SWAN program for the test cases, at least 50 MBytes of free internal memory
is recommended. For more realistic cases 100 to 500 MBytes may be needed, whereas for
more simple stationary or 1D cases significant less memory is needed (less than 5 MBytes
for 1D cases).

29

	Introduction
	The material

	Use of patch files
	Installation
	Introduction
	Classic build instructions
	Configuring the build
	Building SWAN using GNU make
	Building SWAN from scratch
	Building with MPI support
	Building with Metis support
	Building with netCDF support

	Building SWAN with CMake
	Build instructions
	Configuring the build
	Clean up the build files

	User dependent changes and the file swaninit
	Run instructions
	Testing SWAN

