
SWAN

SCIENTIFIC

AND

TECHNICAL

DOCUMENTATION

SWAN Cycle III version 41.45AB





SWAN
SCIENTIFIC AND TECHNICAL
DOCUMENTATION

by : The SWAN team

mail address : Delft University of Technology
Faculty of Civil Engineering and Geosciences
Environmental Fluid Mechanics Section
P.O. Box 5048
2600 GA Delft
The Netherlands

e-mail : swan-info-citg@tudelft.nl
home page : http://www.swan.tudelft.nl

Copyright (c) 1993-2024 Delft University of Technology.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is available at http://www.gnu.org/licenses/fdl.html#TOC1.



iv



Contents

1 Introduction 1
1.1 Historical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Readership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Scope of this document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Governing equations 7
2.1 Spectral description of wind waves . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Propagation of wave energy . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Wave kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Spectral action balance equation . . . . . . . . . . . . . . . . . . . . 11

2.3 Sources and sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 General concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Input by wind (Sin) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Dissipation of wave energy (Sds) . . . . . . . . . . . . . . . . . . . . 21
2.3.4 Nonlinear wave-wave interactions (Snl) . . . . . . . . . . . . . . . . 28
2.3.5 Wave damping due to vegetation . . . . . . . . . . . . . . . . . . . 35
2.3.6 Wave damping due to sea ice . . . . . . . . . . . . . . . . . . . . . 38
2.3.7 Bragg scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.8 First- and second-generation model formulations in SWAN . . . . . 41

2.4 The influence of ambient current on waves . . . . . . . . . . . . . . . . . . 43
2.5 Modelling of obstacles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.1 Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5.2 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5.3 Freeboard dependent reflection and transmission . . . . . . . . . . . 46
2.5.4 Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 Wave-induced set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.7 Quasi-coherent modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7.1 The Wigner distribution . . . . . . . . . . . . . . . . . . . . . . . . 50
2.7.2 Evolution equation for the Wigner distribution . . . . . . . . . . . . 52
2.7.3 The QC approximation . . . . . . . . . . . . . . . . . . . . . . . . . 55

v



vi

3 Numerical approaches 61

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.1 Discretization in geographical space . . . . . . . . . . . . . . . . . . 63

3.2.2 Note on the choice of geographic propagation schemes . . . . . . . . 67

3.2.3 Discretization in spectral space . . . . . . . . . . . . . . . . . . . . 68

3.2.4 Conservative elimination of negative energy densities . . . . . . . . 69

3.3 Solution algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Iteration process and stopping criteria . . . . . . . . . . . . . . . . . . . . 74

3.5 An illustrative explanation of the sweeping approach . . . . . . . . . . . . 77

3.6 Implementation of DIA within the four-sweep technique . . . . . . . . . . . 80

3.7 Action density limiter and under-relaxation . . . . . . . . . . . . . . . . . . 81

3.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.7.2 Convergence-enhancing measures . . . . . . . . . . . . . . . . . . . 82

3.8 On the approximation of refraction in large-scale SWAN applications . . . 84

3.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.8.2 Energy transport along wave rays . . . . . . . . . . . . . . . . . . . 85

3.8.3 The problem with refraction in non-stationary applications . . . . . 87

3.8.4 A historical overview of limitation on cθ . . . . . . . . . . . . . . . 92

3.8.5 The problem with refraction on coarse grids . . . . . . . . . . . . . 93

3.9 Implementation of QC approximation . . . . . . . . . . . . . . . . . . . . . 94

3.10 Governing equations in curvilinear co-ordinates . . . . . . . . . . . . . . . 98

3.11 Computation of force in curvilinear co-ordinates . . . . . . . . . . . . . . . 100

3.12 Numerical treatment of obstacles . . . . . . . . . . . . . . . . . . . . . . . 101

3.13 Crossing of obstacle and grid line . . . . . . . . . . . . . . . . . . . . . . . 103

3.14 Integration over σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.15 Transformation from relative to absolute frequency . . . . . . . . . . . . . 104

3.16 Interpolation of spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.17 Computation of breaking source term . . . . . . . . . . . . . . . . . . . . . 106

4 Wave boundary and initial conditions 109

5 Implementation of 2D wave setup 111

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Numerical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 Discretization of the 2D setup equation . . . . . . . . . . . . . . . . 112

5.2.2 The iterative solver for the linear system . . . . . . . . . . . . . . . 117

6 Iterative solvers 119

6.1 Strongly Implicit Procedure (SIP) . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Successive Over Relaxation (SOR) technique . . . . . . . . . . . . . . . . . 120



vii

7 Parallel implementation aspects 121
7.1 Load balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2 Parallelization of implicit propagation schemes . . . . . . . . . . . . . . . . 122

8 Unstructured mesh implementation 127
8.1 Description of an unstructured grid . . . . . . . . . . . . . . . . . . . . . . 127

8.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.1.2 Relations between number of cells, vertices and faces . . . . . . . . 128
8.1.3 Conditions imposed to the grid . . . . . . . . . . . . . . . . . . . . 128

8.2 Some notes on grid generation . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.3 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.3.1 Discretization procedure . . . . . . . . . . . . . . . . . . . . . . . . 129
8.3.2 The sweeping algorithm . . . . . . . . . . . . . . . . . . . . . . . . 134

8.4 Interpolation at user-defined locations . . . . . . . . . . . . . . . . . . . . . 135
8.5 Computation of wave-induced force . . . . . . . . . . . . . . . . . . . . . . 137
8.6 Calculation of diffusion-like terms . . . . . . . . . . . . . . . . . . . . . . . 138
8.7 Conservation of action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Bibliography 141



viii



Chapter 1

Introduction

The main goal of the SWAN model is to solve the spectral action balance equation without
any a priori restrictions on the spectrum for the evolution of wave growth. This equation
represents the effects of spatial propagation, refraction, shoaling, generation, dissipation
and nonlinear wave-wave interactions. The basic scientific philosophy of SWAN is identical
to that of WAM cycle 3. SWAN is a third-generation wave model and it uses the same
formulations for the source terms.

Whereas the WAM model considers problems on oceanic scales, with SWAN wave propaga-
tion is calculated from deep water to the surf zone. Since, WAM makes use of explicit
propagation schemes in geographical and spectral spaces, it requires very small grid sizes
in shallow water and is thus unsuitable for applications to coastal regions. For that reason,
SWAN employs implicit schemes, which are more robust and economic in shallow water
than the explicit ones. Note that SWAN may be less efficient on oceanic scales than WAM.

1.1 Historical background

Over the past two decades, a number of advanced spectral wind-wave models, known
as third-generation models, has been developed such as WAM (WAMDI Group, 1988),
WAVEWATCH III (Tolman, 1991), TOMAWAC (Benoit et al., 1996) and SWAN (Booij
et al., 1999). These models solve the spectral action balance equation without any a priori
restrictions on the spectrum for the evolution of wave growth.

Based on the wave action balance equation with sources and sinks, the shallow water wave
model SWAN (acronym for Simulating WAves Nearshore) is an extension of the deep water
third-generation wave models. It incorporates the state-of-the-art formulations for the deep
water processes of wave generation, dissipation and the quadruplet wave-wave interactions
from the WAM model (Komen et al., 1994). In shallow water, these processes have been
supplemented with the state-of-the-art formulations for dissipation due to bottom friction,
triad wave-wave interactions and depth-induced breaking. SWAN is fully spectral (in all
directions and frequencies) and computes the evolution of wind waves in coastal regions
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2 Chapter 1

with shallow water and ambient current.

SWAN is developed at Delft University of Technology and is freely available at
http://www.swan.tudelft.nl. It is used by many goverment authorities, research institutes
and consultants worldwide. The feedback has widely indicated the reliability of SWAN in
different experiment and field cases.

Initially, the SWAN cycle 1 was formulated to be able to handle only stationary condi-
tions on a rectangular grid. Later on, SWAN cycle 2 model has been developed. This is
considered as the second step in the development of SWAN models. Cycle 2 of SWAN is
stationary and optionally nonstationary. It can compute the wave propagation not only on
a regular rectangular grid, but also on a curvilinear grid. Previous official versions 30.62,
30.75, 40.01 and 32.10 belong to the cycle 2 of SWAN.

This section is under preparation.

1.2 Purpose and motivation

The purpose of this document is to provide relevant information on the mathematical
models and numerical techniques for the simulation of spectra of random short-crested,
wind-generated waves in coastal regions. Furthermore, this document explains the essential
steps involved in the implementation of various numerical methods, and thus provides an
adequate reference with respect to the structure of the SWAN program.

1.3 Readership

This document is, in the first place, addressed to those, who wish to modify and to ex-
tend mathematical and numerical models for shallow wind-wave problems. However, this
material is also useful for those who are interested in the application of the techniques
discussed here. The text assumes the reader has basic knowledge of analysis, partial dif-
ferential equations and numerical mathematics and provides what is needed both in the
main text and in the appendices.

1.4 Scope of this document

SWAN is a third-generation wave model for obtaining realistic estimates of wave parameters
in coastal areas, lakes and estuaries from given wind, bottom and current conditions.
However, SWAN can be used on any scale relevant for wind-generated surface gravity
waves. The model is based on the wave action balance equation (or energy balance in the
absence of currents) with sources and sinks. Good introductory texts on the background
of SWAN are Young (1999) and Booij et al. (1999).
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The following wave propagation processes are represented in SWAN:

• propagation through geographic space,

• refraction due to spatial variations in bottom and current,

• diffraction,

• shoaling due to spatial variations in bottom and current,

• blocking and reflections by opposing currents and

• transmission through, blockage by or reflection against obstacles.

The following wave generation and dissipation processes are represented in SWAN:

• generation by wind,

• dissipation by whitecapping,

• dissipation by depth-induced wave breaking,

• dissipation by bottom friction and

• wave-wave interactions in both deep and shallow water.

In addition, the wave-induced set-up of the mean sea surface can be computed in SWAN.
However, wave-induced currents are not computed by SWAN. In 1D cases, computation of
wave-induced set-up is based on exact shallow water equations, whereas in 2D cases they
need to be approximated since the effects of wave-induced currents are ignored.

Diffraction is modelled in a restrict sense, so the model should be used in areas where
variations in wave height are large within a horizontal scale of a few wave lengths. However,
the computation of diffraction in arbitrary geophysical conditions is rather complicated
and requires considerable computing effort. To avoid this, a phase-decoupled approach, as
described in (Holthuijsen et al., 2003), is employed so that same qualitative behaviour of
spatial redistribution and changes in wave direction is obtained. This approach, however,
does not properly handle diffraction in harbours or in front of reflecting obstacles.

SWAN is stationary and optionally nonstationary and can be applied in Cartesian or
curvilinear (recommended only for small scales) or spherical (small scales and large scales)
co-ordinates. The stationary mode should be used only for waves with a relatively short
residence time in the computational area under consideration, i.e. the travel time of the
waves through the region should be small compared to the time scale of the geophysical
conditions (wave boundary conditions, wind, tides and storm surge).
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1.5 Overview

The remainder of this document is subdivided as follows: In Chapter 2 the action balance
equations used in SWAN are presented. Next, each source term of the governing equations
is in depth described. In Chapter 3 the main characteristics of the finite difference method
for the discretization of the governing equations in irregular horizontal planes are outlined.
Various differencing schemes for spatial propagation are reported. Chapter 4 is concerned
with discussing several boundary conditions and their implementation. Chapter 5 is de-
voted to the design of the two-dimensional wave set-up of sea surface. Chapter 6 is devoted
to the linear solvers for the solution of the resulted linear systems of equations. Chapter 7
deals with some consideration on parallelization of SWAN on distributed memory archi-
tectures. Chapter 8 presents an unstructured-mesh procedure for SWAN.

This document, however, is not intended as being complete. Although, this document
describes the essential steps involved in the simulation of waves, so that the user can see
which can be modified or extended to solve a particular problem properly, some issues
involved in SWAN are not included. Below, a list of these issues is given, of which the
information may be available elsewhere:

• reflection,

• iterative solvers,

• overall solution algorithm.

1.6 Acknowledgements

The present SWAN team are grateful to the original authors from the very first days of
SWAN which took place at the Delft University of Technology in Delft, The Netherlands
in 1993: Nico Booij, Leo Holthuijsen and Roeland Ris.

We further want to acknowledge all contributors who helped us to improve SWAN, reported
bugs, and tested SWAN thoroughly: Tim Campbell, John Cazes, Casey Dietrich, IJsbrand
Haagsma, Agnieszka Herman, Jim Kaihatu, Kees Kassels, Annette Kieftenburg, Ekaterini
Kriezi, Roberto Padilla-Hernandez, Erick Rogers, Gerbrant van Vledder, Kees Vuik, Andre
van der Westhuysen, James Salmon, Pieter Bart Smit, Gal Akrish, Ad Reniers and Marcel
Zijlema.

Many thanks are due to Gerbrant van Vledder (†) who provided the source code XNL for
exact computation of four wave-wave interations.

It was also the important role which SWAN played in several projects, mostly funded by
the Office of Naval Research (USA), which helped a lot to develop and maintain SWAN.
The present version of SWAN is supported by Rijkswaterstaat (as part of the Ministry of
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Transport, Public Works and Water Management, The Netherlands).

We are finally grateful to all those other people working on the Public Domain Software
without which the development of SWAN would be unthinkable: Linux, GNU Fortran,
LATEX, MPICH2, Perl, CMake and many others.
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Chapter 2

Governing equations

2.1 Spectral description of wind waves

Wind generated waves have irregular wave heights and periods, caused by the irregular
nature of wind. Due to this irregular nature, the sea surface is continually varying, which
means that a deterministic approach to describe the sea surface is not feasible. On the
other hand, statistical properties of the surface, like average wave height, wave periods and
directions, appear to vary slowly in time and space, compared to typical wave periods and
wave lengths.

The surface elevation of waves in the ocean, at any location and any time, can be seen
as the sum of a large number of harmonic waves, each of which has been generated by
turbulent wind in different places and times. They are therefore statistically independent
in their origin. According to linear wave theory, they remain independent during their
journey across the ocean. Under these conditions, the sea surface elevation on a time scale
of hundreds of characterstic wave periods is sufficiently well described as a stationary,
Gaussian process. The sea surface elevation in one point as a function of time can be
described as

η(t) =
∑

i

ai cos(σit+ αi) (2.1)

with η the sea surface elevation, ai the random amplitude of the ith wave component, σi the
relative radian or circular frequency of the ith wave component in the presence of the am-
bient current (equals the absolute radian frequency ω when no ambient current is present)
and αi the random phase of the ith wave component. This is called the random-phase
model (Holthuijsen, 2007). Note that the random variables ai and αi are characterized
by their probability density functions; the amplitude of each wave component is Rayleigh
distributed and the phase of each component is uniformly distributed between 0 and 2π.

In the presence of the ambient current, it is assumed that it is uniform with respect to the
vertical co-ordinate and the changes in the mean flow within a wave length are so small
that they affect only negligibly the dispersion relation. The absolute radian frequency ω

7



8 Chapter 2

then equals the sum of the relative radian frequency σ and the inner product of the wave
number and ambient current velocity vectors, as follows

ω = σ + ~k · ~u (2.2)

which is the usual Doppler shift. Here, ~k = (kx, ky) and for linear waves the relative
frequency is given by

σ =
√
g|~k| tanh(|~k|d) (2.3)

where g is the acceleration of gravity and d is the water depth.

Ocean waves are chaotic and a description in the time domain is rather limited. Altern-
atively, many manipulations are more readily described and understood with the variance
density spectrum, which is the Fourier transform of the auto-covariance function of the sea
surface elevation

E ′(f) =
∫ +∞

−∞
C(τ)e−2πifτdτ (2.4)

with f = σ/2π the frequency (in Hz) and

C(τ) =< η(t)η(t+ τ) > (2.5)

where C(τ) is the auto-covariance function, < · > represents ensemble average of a random
variable, τ is the time lag and η(t), η(t+ τ) describe two random processes of sea surface
elevation.

For a stationary wave condition, it is conventional to consider a spectrum E(f) different
from the above one, as follows

E(f) = 2E ′(f) for f ≥ 0 and E(f) = 0 for f < 0 (2.6)

The description of the wave field through the defined variance density spectrum E(f) is
called spectral description of water waves. This description is complete in a statistical
sense under the assumption that the sea surface is considered as a stationary, Gaussian
random process.

The variance of the sea surface elevation is given by

< η2 >= C(0) =
∫ +∞

0
E(f)df (2.7)

which indicates that the spectrum distributes the variance over frequencies. E(f) should
therefore be interpreted as a variance density. The dimension of E(f) is m2/Hz if the
surface elevation is given in meters and the frequency in Hz.

The variance < η2 > is closely linked to the total energy Etot of the waves per unit surface
area, as follows

Etot =
1

2
ρwg < η2 > (2.8)
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with ρw the water density. The terms variance and energy density spectrum will therefore
be used indiscriminately in this document (however, see Zijlema, 2021).

In many wave problems it is not sufficient to define the energy density as a function of
frequency alone. It is mostly required to distribute the wave energy over directions as
well. This spectrum, which distributes the wave energy over frequencies f and directions
θ, is denoted by E(f, θ). Again, this spectrum is assumed to provide a complete spectral
description of the wave field if this field is statistically quasi-homogeneous (and stationary
Gaussian), which especially holds for broad-banded directional waves (i.e. wind sea). Sec-
tion 2.7 discusses the extension of this description to include the statistical inhomogeneity
of the wave field (e.g. due to wave interference patterns).

As the total energy density at a frequency f is distributed over the directions θ in E(f, θ),
it follows that

E(f) =
∫ 2π

0
E(f, θ)dθ (2.9)

The energy density spectra E(f) and E(f, θ) are depicted in Figure 2.1.

( , )E f θ

f

( )E f

f

θ
f

two-dimensional 

one-dimensional 

NORTH

swell

swell

wind sea

wind sea

storm

local breeze

North Sea

N

Figure 2.1: Illustrations of 1D and 2D wave spectra. (Reproduced from Holthuijsen (2007)
with permission of Cambridge University Press.)

Based on the energy density spectrum, the integral wave parameters can be obtained.
These parameters can be expressed in terms of the so-called n−th moment of the energy
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density spectrum

mn =
∫ ∞

0
fnE(f)df (2.10)

So, the variance of the sea surface elevation is given by m0 =< η2 >. Well-known para-
meters are the significant wave height

Hs = 4
√
m0 (2.11)

and some wave periods

Tm01 =
m0

m1

, Tm02 =

√
m0

m2

, Tm−10 =
m−1

m0

(2.12)

In SWAN, the energy density spectrum E(σ, θ) is generally used. On a larger scale the
spectral energy density function E(σ, θ) becomes a function of space and time, that is,
E(~x, t; σ, θ) and wave dynamics should be considered to determine the evolution of the
spectrum in space and time.

2.2 Propagation of wave energy

2.2.1 Wave kinematics

Using the linear wave theory and the conversion of wave crests, the wave propagation
velocities in spatial space within Cartesian framework and spectral space can be obtained
from the kinematics of a wave train (Whitham, 1974; Mei, 1983)

d~x

dt
= (cx, cy) = ~cg + ~u =

1

2


1 +

2|~k|d
sinh(2|~k|d)


 σ~k

|~k|2
+ ~u

dσ

dt
= cσ =

∂σ

∂d

(
∂d

∂t
+ ~u · ∇~xd

)
− cg~k ·

∂~u

∂s
(2.13)

dθ

dt
= cθ = −

1

k

(
∂σ

∂d

∂d

∂m
+ ~k · ∂~u

∂m

)

where cx, cy are the propagation velocities of wave energy in spatial x−, y−space, cσ and
cθ are the propagation velocities in spectral space σ−, θ−space, ~u = (ux, uy) is the ambient
current, d is the water depth, s is the space co-ordinate in the wave propagation direction
of θ and m is a co-ordinate perpendicular to s. The expression for cθ is presented here
without diffraction effects. These are treated separately in Section 2.5.4.

Furthermore,
~k = (kx, ky) = (|~k| cos θ, |~k| sin θ) (2.14)
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and the ambient current ~u is assumed to be uniform with respect to the vertical co-ordinate.
In addition, the operator d/dt denotes the total derivative along a spatial path of energy
propagation, and is defined as

d

dt
=

∂

∂t
+ (~cg + ~u) · ∇~x (2.15)

2.2.2 Spectral action balance equation

All information about the sea surface is contained in the wave variance spectrum or energy
density E(σ, θ), distributing wave energy over (radian) frequencies σ (as observed in a
frame of reference moving with current velocity) and propagation directions θ (the direction
normal to the wave crest of each spectral component).

Usually, wave models determine the evolution of the action density N(~x, t; σ, θ) in space ~x
and time t. The action density is defined as N = E/σ and is conserved during propagation
along its wave characteristic in the presence of ambient current, whereas energy density E
is not (Whitman, 1974). Wave action is said to be adiabatic invariant.

The rate of change of the action density N at a single point in space (~x; σ, θ) is governed
by the action balance equation, which reads (e.g., Mei, 1983; Komen et al., 1994)

∂N

∂t
+∇~x · [(~cg + ~u)N ] +

∂cσN

∂σ
+

∂cθN

∂θ
=

Stot

σ
(2.16)

The left hand side is the kinematic part of this equation. The second term denotes
the propagation of wave energy in two-dimensional geographical ~x-space, including wave
shoaling, with the group velocity ~cg = ∂σ/∂~k following from the dispersion relation

σ2 = g|~k| tanh(|~k|d). The third term represents the effect of shifting of the radian frequency
due to variations in depth and mean currents. The fourth term represents depth-induced
and current-induced refraction. The quantities cσ and cθ are the propagation velocities
in spectral space (σ, θ). Notice that the second, third and fourth terms are divergence
terms representing the amount of flux entering or leaving a point, and hence, they act as
source (negative divergence, i.e. flux entering a point) or sink (positive divergence, i.e. flux
leaving a point) terms. The right hand side contains Stot, which is the non-conservative
source/sink term that represents all physical processes which generate, dissipate, or redis-
tribute wave energy at a point. They are defined for energy density E(σ, θ) (i.e. not wave
action). Details are given in Section 2.3.

At deep water without ambient current, Equation (2.16) is reduced to

∂E

∂t
+∇~x · (~cgE) = Stot (2.17)

which can be considered as a ray equation for a wave packet propagating along its wave
ray. In the absence of the generation and dissipation of waves, wave energy is conserved



12 Chapter 2

along its propagation path, which implies that the net flux of wave energy along this path
is conserved (i.e. the divergence of this flux is zero). This is known as the law of constant
energy flux along the wave ray (Burnside, 1915; Whitham, 1974, pg. 245). This law is
essentially the bedrock on which the discretization of the action balance equation has been
built. This will be discussed in Section 3.2.1.

It must be noted that the second term in the left hand side of Eq. (2.17) should not be
interpreted as the transport of E (being a transported quantity) with a transport velocity
~cg. The underlying reason is that the group velocity is generally not divergence free.
Instead, we rewrite Eq. (2.17) as follows

∂E

∂t
+ ~cg · ∇~xE + E∇~x · ~cg = Stot

The second term in the left hand side represents the actual transport of E along the wave
ray with velocity ~cg and the third term can be considered as a source or sink term with re-
spect to energy density E; this density can be created (shoaling) or destroyed (de-shoaling)
along the wave ray. This is due to the change in the group velocity along this ray. The
correct interpretation of the second term of Eq. (2.17) is the divergence of the energy flux
~cgE, i.e. the net energy flux per unit square (it measures the flux source or sink at a
point). The space discretization, as will be described in Section 3.2.1, is based on this
interpretation.

Equation (2.16) can be recasted in Cartesian or spherical co-ordinates. For small scale ap-
plications the spectral action balance equation may be expressed in Cartesian co-ordinates
as given by

∂N

∂t
+

∂cxN

∂x
+

∂cyN

∂y
+

∂cσN

∂σ
+

∂cθN

∂θ
=

Stot

σ
(2.18)

With respect to applications at shelf sea or oceanic scales the action balance equation may
be recasted in spherical co-ordinates as follows

∂Ñ

∂t
+

∂cλÑ

∂λ
+

∂cϕÑ

∂ϕ
+

∂cσÑ

∂σ
+

∂c̃θÑ

∂θ
=

Stot

σ
(2.19)

with action density Ñ with respect to longitude λ and latitude ϕ. Note that θ is the
wave direction taken counterclockwise from geographic East. The propagation velocities
are reformulated as follows. On a sphere, we have

dx = R cosϕdλ (2.20)

dy = Rdϕ

with R the radius of the earth. The propagation velocities in geographic space are then
given by

dλ

dt
= cλ =

1

R cosϕ


1
2


1 +

2|~k|d
sinh(2|~k|d)


 σ|~k| cos θ

|~k|2
+ uλ


 (2.21)
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dϕ

dt
= cϕ =

1

R


1
2


1 +

2|~k|d
sinh(2|~k|d)


 σ|~k| sin θ

|~k|2
+ uϕ




with uλ and uϕ the ambient currents in longitude and latitude direction, respectively. The
propagation velocity in σ−space remain unchanged. To rewrite the propagation velocity
c̃θ in terms of spherical co-ordinates, we use the so-called Clairaut’s equation that states
that on any geodesic, the following expression holds:

R cosϕ cos θ = constant (2.22)

Differentiation of Eq. (2.22) with respect to a space co-ordinate s in wave direction gives

−R sinϕ cos θ
dϕ

ds
−R cosϕ sin θ

dθ

ds
= 0 (2.23)

Since, dy = ds sin θ, we have dϕ/ds = sin θ/R. Substitution into Eq. (2.23) and using
ds = (cx cos θ + cy sin θ)dt yields

dθ

dt
= −cx cos θ + cy sin θ

R
cos θ tanϕ (2.24)

This term (2.24) accounts for the change of propagation direction relative to true North
when travelling along a great circle. This holds for deep water and without currents.
Hence,

c̃θ = cθ −
cx cos θ + cy sin θ

R
cos θ tanϕ (2.25)

In Eq. (2.19), Ñ is related to the action density N in a local Cartesian frame (x, y) through
Ñdσdθdϕdλ = Ndσdθdxdy, or Ñ = NR2 cosϕ. Substitution into (2.19) yields:

∂N

∂t
+

∂cλN

∂λ
+ cos−1 ϕ

∂cϕ cosϕN

∂ϕ
+

∂cσN

∂σ
+

∂c̃θN

∂θ
=

Stot

σ
(2.26)

2.3 Sources and sinks

First, in Section 2.3.1 general concepts of the physical processes of generation, dissipa-
tion and nonlinear wave-wave interactions that are implemented in SWAN are outlined.
Next, complete expressions for these physical processes are given in subsequent sections.
Apart from these basic processes, a number of supplemental processes are discussed sep-
arately: wave dissipation due to vegetation (Section 2.3.5), wave dissipation by sea ice
(Section 2.3.6), and the scattering of waves by irregular seabed (Section 2.3.7). Finally,
for completeness, the first- and second-generation formulations as employed in SWAN are
outlined in Section 2.3.8.
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2.3.1 General concepts

In shallow water, six basic processes contribute to Stot:

Stot = Sin + Snl3 + Snl4 + Sds,w + Sds,b + Sds,br . (2.27)

These terms denote, respectively, wave growth by the wind, nonlinear transfer of wave en-
ergy through three-wave and four-wave interactions and wave decay due to whitecapping,
bottom friction and depth-induced wave breaking. First, a brief summary of the formula-
tions is given below. Next, for each term complete expressions are outlined.

Wind input

Transfer of wind energy to the waves is described with a resonance mechanism (Phillips,
1957) and a feed-back mechanism (Miles, 1957).

Resonance with wind-induced pressure fluctations

The pressure distribution induced by wind at the sea surface is random. It propagates more
or less a frozen pattern over the surface with wind speed. This can be Fourier transformed
to produce harmonic pressure waves that propagate with wind speed. If this harmonic
pressure wave remains in phase with a free harmonic surface wave, then the wind energy
is transferred from the pressure wave to the surface wave. The energy input by this mech-
anism, which contributes to the initial stages of wave growth, varies linearly with time.

Feedback of wave-induced pressure fluctations

When a wave has been generated by the resonance mechanism as explained above, it will
distort the wind profile just above the water surface. This distortion results in an ’over
pressure’ on the wind ward side of the crest of the wave and an ’under pressure’ at the lee
side of the crest. It means that when the sea surface moves up and down, the pressure also
follows the same movements, therefore transfer energy to the wave. This energy transfer
is proportional to the energy in the wave itself, so the wave grows more as it gets larger.
This effect is found to be exponential in time.

Based on the two wave growth mechanisms, wave growth due to wind commonly described
as the sum of linear and exponential growth term of a wave component:

Sin(σ, θ) = A+ BE(σ, θ) (2.28)

in which A and B depend on wave frequency and direction, and wind speed and direction.
The effects of currents are accounted for by using the apparent local wind speed and
direction. The expression for the term A is due to Cavaleri and Malanotte-Rizzoli (1981)
with a filter to avoid growth at frequencies lower than the Pierson-Moskowitz frequency
(Tolman, 1992a). Two optional expressions for the coefficient B are used in the SWAN
model. The first is taken from an early version of the WAM Cycle 3 model (the WAMDI
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group, 1988). It is due to Snyder et al. (1981), rescaled in terms of friction velocity U∗

by Komen et al. (1984). The drag coefficient to relate U∗ to the driving wind speed at
10 m elevation U10 is taken from either Wu (1982) or Zijlema et al. (2012). The second
expression for B in SWAN is taken from the WAM Cycle 4 model (Komen et al., 1994). It
is due to Janssen (1991a) and it accounts explicitly for the interaction between the wind
and the waves by considering atmospheric boundary layer effects and the roughness length
of the sea surface. The corresponding set of equations is solved (as in the WAM model)
with the iterative procedure of Mastenbroek et al. (1993).

Dissipation

The dissipation term of wave energy is represented by the summation of three different
contributions: whitecapping Sds,w, bottom friction Sds,b and depth-induced breaking Sds,br.

Whitecapping is primarily controlled by the steepness of the waves. In presently operating
third-generation wave models, the whitecapping formulations are based on a pulse-based
model (Hasselmann, 1974), as adapted by the WAMDI group (1988):

Sds,w(σ, θ) = −Γσ̃
k

k̃
E(σ, θ) (2.29)

where Γ is a steepness dependent coefficient, k is wave number and σ̃ and k̃ denote a
mean frequency and a mean wave number, respectively (cf. the WAMDI group, 1988).
Komen et al. (1984) estimated the value of Γ by closing the energy balance of the waves
in fully developed conditions. This implies that this value depends on the wind input
formulation that is used. Since two expressions are used for the wind input in SWAN, also
two values for Γ are used. The first is due to Komen et al. (1984), as in WAM Cycle 3.
The second expression is an adaptation of this expression based on Janssen (1991a), as in
WAM Cycle 4 (see Janssen, 1991b; Günther et al., 1992). Young and Banner (1992) and
Banner and Young (1994) have shown that the results of closing the energy balance in this
manner depend critically on the choice of a high-frequency cut-off frequency above which
a diagnostic spectral tail is used. In SWAN, this cut-off frequency is different from the one
used in the WAM model. Differences in the growth rates between the WAM model and
SWAN are therefore to be expected.

A number of alternative whitecapping expressions have been proposed to improve the
accuracy of SWAN. These range from alternative calibrations of the Komen et al. (1984)
expression, e.g. Rogers et al. (2003), to alternative ways of calculating mean spectral
steepness, e.g. Van Vledder and Hurdle (2002). In SWAN, another alternative is presented.

This alternative is proposed by Van der Westhuysen et al. (2007) and Van der Westhuysen
(2007), based on the whitecapping expression of Alves and Banner (2003). This expression
is based on experimental findings that whitecapping dissipation appears to be related to the
nonlinear hydrodynamics within wave groups. This yields a dissipation term that primarily
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depends on quantities that are local in the frequency spectrum, as opposed to ones that are
distributed over the spectrum, as in the expression of Komen et al. (1984). However, the
final whitecapping expression proposed by Alves and Banner (2003) features additional
dependencies on the spectral mean wavenumber and steepness, which is problematic in
situations of mixed sea and swell often encountered in the nearshore. Therefore, their
whitecapping expression is applied in Van der Westhuysen (2007) without these mean
spectral dependencies. This adapted whitecapping expression is used together with a wind
input term that is based on that of Yan (1987).

In shallow water the orbital motions of the water particles, induced by surface waves,
extend down to the sea floor. This gives rise to an interaction between te surface waves
and the bottom. An overview of different wave-bottom interaction mechanisms and of
their relative strengths is given by Shemdin et al. (1978). They are: scattering on bottom
irregularities, motion of a soft bottom, percolation into a porous bottom and friction in the
turbulent bottom boundary layer. The first process results in a local redistribution of wave
energy by scattering of wave components. The last three are dissipative. Their strength
depends on the bottom conditions. For continental shelf seas with sandy bottoms, the
dominant mechanism appears to be bottom friction (Bertotti and Cavaleri, 1994) which
can generally be expressed as

Sds,b = −Cb
σ2

g2 sinh2 kd
E(σ, θ) (2.30)

in which Cb is a bottom friction coefficient. A large number of models has been proposed
since the pioneering paper of Putnam and Johnson (1949). Hasselmann et al. (1973)
suggested to use an empirically obtained constant. It seems to perform well in many dif-
ferent conditions as long as a suitable value is chosen (typically different for swell and
wind sea). A nonlinear formulation based on drag has been proposed by Hasselmann and
Collins (1968) which was later simplified by Collins (1972). More complicated, eddy vis-
cosity models have been developed by Madsen et al. (1988) and by Weber (1989, 1991a,
1991b). Considering the large variations in bottom conditions in coastal areas (bottom
material, bottom roughness length, ripple height, etc.), there is no field data evidence to
give preference to a particular friction model (Luo and Monbaliu, 1994). For this reason,
the simplest of each of these types of friction models has been implemented in SWAN: the
empirical JONSWAP model of Hasselmann et al. (1973), the drag law model of Collins
(1972) and the eddy-viscosity model of Madsen et al. (1988). The effect of a mean current
on the wave energy dissipation due to bottom friction is not taken into account in SWAN.
The reasons for this are given by Tolman (1992b) who argues that state-of-the-art expres-
sions vary too widely in their effects to be acceptable. He found that the error in finding
a correct estimate of the bottom roughness length scale has a much larger impact on the
energy dissipation rate than the effect of a mean current.

When waves propagate towards shore, shoaling leads to an increase in wave height. When
the ratio of wave height over water depth exceeds a certain limit, waves start to break,



Governing equations 17

thereby dissipating energy rapidly. In extreme shallow water (surf zone), this process be-
comes dominant over all other processes. The process of depth-induced wave breaking is
still poorly understood and little is known about its spectral modelling. In contrast to
this, the total dissipation (i.e. integrated over the spectral space) due to this type of wave
breaking can be well modelled with the dissipation of a bore applied to the breaking waves
in a random field (Battjes and Janssen, 1978; Thornton and Guza, 1983). Laboratory
observations (e.g., Battjes and Beji, 1992; Vincent et al. 1994; Arcilla et al., 1994 and
Eldeberky and Battjes, 1996) show that the shape of initially uni-modal spectra propagat-
ing across simple (barred) beach profiles, is fairly insensitive to depth-induced breaking.
This has led Eldeberky and Battjes (1995) to formulate a spectral version of the bore
model of Battjes and Janssen (1978) that conserves the spectral shape. Expanding their
expression to include directions, the expression reads:

Sds,br(σ, θ) =
Dtot

Etot

E(σ, θ) (2.31)

in which Etot is the total wave energy and Dtot < 0 is the rate of dissipation of the total
energy due to wave breaking according to Battjes and Janssen (1978). The value of Dtot

depends critically on the breaker parameter γ = Hmax/d (in which Hmax is the maximum
possible individual wave height in the local water depth d). In SWAN, both a constant
value and a variable value are available. Examples of a variable breaker parameter can be
found in Nelson (1987) and Ruessink et al. (2003). (Both are implemented in SWAN.)
The constant value is γ = 0.73 found as the mean value of the data set of Battjes and Stive
(1985).

Nonlinear wave-wave interactions

The basic properties of wave-wave interactions were discovered during the fundamental
research of Phillips (1960) and Hasselmann (1960, 1962, 1963a,b). The physical meaning
of the interactions is that resonant sets of wave components exchange energy, redistrib-
uting energy over the spectrum. In deep and intermediate water, four-wave interactions
(so-called quadruplets) are important, whereas in shallow water three-wave interactions
(so-called triads) become important.

In deep water, quadruplet wave-wave interactions dominate the evolution of the spectrum.
They transfer wave energy from the spectral peak to lower frequencies (thus moving the
peak frequency to lower values) and to higher frequencies (where the energy is dissipated
by whitecapping). In very shallow water, triad wave-wave interactions transfer energy
from lower frequencies to higher frequencies often resulting in higher harmonics (Beji and
Battjes, 1993). Low-frequency energy generation by triad wave-wave interactions is not
considered here.

A full computation of the quadruplet wave-wave interactions is extremely time consuming
and not convenient in an operational wave model. Nevertheless, SWAN has an option to
compute the Boltzmann integral in an exact manner. The approach is the exact method
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developed by Webb, Tracy and Resio (WRT) (Resio et al., 2001). This algorithm was
reprogrammed by Van Vledder, bearing the name XNL (Van Vledder and Bottema, 2003).
This method is also enable to capture the frequency shift and the spectral shape changes
as water depth decreases.

A number of techniques, based on parametric methods and approximations have been
proposed to improve computational speed of computing quadruplets (see Young and Van
Vledder (1993) for a review). In SWAN, the computations are carried out with the Discrete
Interaction Approximation (DIA) of Hasselmann et al. (1985). This DIA has been found
to be quite successful in describing the essential features of a developing wave spectrum;
see Komen et al. (1994). For uni-directional waves, this approximation is not valid. In
fact, the quadruplet interaction coefficient for these waves is nearly zero. For finite-depth
applications, Hasselmann and Hasselmann (1981) have shown that for a JONSWAP-type
spectrum the quadruplet wave-wave interactions can be scaled with a simple expression. In
some cases, the DIA technique may not be accurate enough. In Hashimoto et al. (2002),
it was demonstrated that the accuracy of the DIA may be improved by increasing the
number of quadruplet configurations. They proposed a Multiple DIA with up to 6 wave
number configurations.

In very shallow water, triad wave interactions become important for steep waves. It trans-
fers energy to higher frequencies, resulting in higher harmonics (Beji and Battjes, 1993).
The energy transfer in this process can take place over relatively short distance and can
dramatically change single peaked spectra into multiple peaked spectra, which has fre-
quently been observed in the field (Arcilla et al., 1994) and in a number of laboratory
experiments with a bar-trough profile (Beji and Battjes, 1993) and a plane beach profile
(Nwogu, 1994).

A first attempt to describe triad wave-wave interactions in terms of a spectral energy source
term was made by Abreu et al. (1992). However, their expression is restricted to non-
dispersive shallow water waves and is therefore not suitable in many practical applications
of wind waves. The breakthrough in the development came with the work of Eldeberky
and Battjes (1995) who transformed the amplitude part of the Boussinesq model of Mad-
sen and Sørensen (1993) into an energy density formulation and who parameterized the
biphase of the waves on the basis of laboratory observations (Battjes and Beji, 1992; Arcilla
et al., 1994). A discrete triad approximation (DTA) for collinear waves was subsequently
obtained by considering only the dominant self-self interactions. Their model has been
verified with flume observations of long-crested, random waves breaking over a submerged
bar (Beji and Battjes, 1993) and over a barred beach (Arcilla et al., 1994). The model
appeared to be fairly successful in describing the essential features of the energy transfer
from the primary peak of the spectrum to the super harmonics. A slightly different version,
the so-called Lumped Triad Approximation (LTA) was later derived by Eldeberky (1996).
This LTA technique is employed in SWAN.

An alternative triad model is the Stochastic Parametric model based on Boussinesq equa-
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tions (SPB) model derived by Becq-Girard et al. (1999). Like the LTA, the SPB is based
on the Boussinesq-type equations of Madsen and Sørensen (1993). However, instead of
fully neglecting the fourth-order contributions, they are assumed to be proportional to
the bispectrum itself by introducing an empirical parameter µ. In effect, this represents a
length scale over which the bispectrum, in the absence of forcing, returns to zero.

Another development for the representation of triad interactions in SWAN is due to Booij
et al. (2009), called the Distributed Collinear Triad Approximation (DCTA). Its expression
is similar to that of the quadruplet wave-wave interaction while removing one component
from the expression. In addition, the associated scaling heuristically forces the spectral tail
to converge to the equilibrium k−4/3 high-frequency tail at shallow water depths (kd < 1).
In effect, DCTA accounts for both the initial generation of all sub and super harmonics
and the transition to a universal smooth tail.

2.3.2 Input by wind (Sin)

Wave growth by wind is described by

Sin(σ, θ) = A+ BE(σ, θ) (2.32)

in which A describes linear growth and BE exponential growth. It should be noted that
the SWAN model is driven by the wind speed at 10m elevation U10 whereas it uses the
friction velocity U∗. For the WAM Cycle 3 formulation the transformation from U10 to U∗

is obtained with
U2
∗ = CDU

2
10 (2.33)

in which CD is the drag coefficient from Wu (1982):

CD(U10) =

{
1.2875× 10−3 , for U10 < 7.5m/s
(0.8 + 0.065s/m× U10)× 10−3 , for U10 ≥ 7.5m/s

(2.34)

Recent observations indicate that this parameterization overestimate the drag coefficient
at high wind speeds (U10 > 20 m/s, say). Based on many authoritative studies it appears
that the drag coefficient increases almost linearly with wind speed up to approximately 20
m/s, then levels off and decreases again at about 35 m/s to rather low values at 60 m/s
wind speed. We fitted a 2nd order polynomial to the data obtained from these studies,
and this fit is given by

CD(U10) = (0.55 + 2.97Ũ − 1.49Ũ2)× 10−3 (2.35)

where Ũ = U10/Uref , and the reference wind speed Uref = 31.5 m/s is the speed at which
the drag attains its maximum value in this expression. These drag values are lower than
in the expression of Wu (1982) by 10% − 30% for high wind speeds (15 ≤ U10 ≤ 30 m/s)
and over 30% for hurricane wind speeds (U10 > 30 m/s). More details can be found in
Zijlema et al. (2012). Since version 41.01, the SWAN model employs the drag formulation
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as given by Eq. (2.35).

For the WAM Cycle 4 formulations, the computation of U∗ is an integral part of the source
term.

Linear growth by wind

For the linear growth term A, the expression due to Cavaleri and Malanotte-Rizzoli (1981)
is used with a filter to eliminate wave growth at frequencies lower than the Pierson-
Moskowitz frequency (Tolman, 1992a)1:

A =
1.5× 10−3

2πg2
(U∗ max[0, cos(θ − θw)])

4H , H = exp

{
−( σ

σ∗
PM

)−4

}
, σ∗

PM =
0.13g

28U∗

2π

(2.36)
in which θw is the wind direction, H is the filter and σ∗

PM is the peak frequency of the fully
developed sea state according to Pierson and Moskowitz (1964) as reformulated in terms
of friction velocity.

Exponential growth by wind

Two expressions for exponential growth by wind are optionally available in the SWAN
model. The first expression is due to Komen et al. (1984). Their expression is a function
of U∗/cph:

B = max[0, 0.25
ρa
ρw

(28
U∗

cph
cos(θ − θw)− 1)]σ (2.37)

in which cph is the phase speed and ρa and ρw are the density of air and water, respectively.
This expression is also used in WAM Cycle 3 (the WAMDI group, 1988). The second
expression is due to Janssen (1989,1991a). It is based on a quasi-linear wind-wave theory
and is given by

B = β
ρa
ρw

(
U∗

cph

)2

max[0, cos(θ − θw)]
2σ (2.38)

where β is the Miles constant. In the theory of Janssen (1991a), this constant is estimated
from the non-dimensional critical height λ:





β = 1.2
κ2 λ ln

4 λ , λ ≤ 1

λ = gze
c2
ph

er , r = κc/|U∗ cos(θ − θw)|
(2.39)

where κ = 0.41 is the Von Karman constant and ze is the effective surface roughness. If
the non-dimensional critical height λ > 1, the Miles constant β is set equal 0. Janssen
(1991a) assumes that the wind profile is given by

U(z) =
U∗

κ
ln[

z + ze − z0
ze

] (2.40)

1In Eq. (10) of Tolman (1992a) the power of 10−5 should be 10−3; H. Tolman, personal communication,
1995.
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in which U(z) is the wind speed at height z (10m in the SWAN model) above the mean
water level, z0 is the roughness length. The effective roughness length ze depends on the
roughness length z0 and the sea state through the wave-induced stress ~τw and the total
surface stress ~τ = ρa| ~U∗| ~U∗:

ze =
z0√

1− | ~τw|
|~τ |

, z0 = α̂
U2
∗

g
(2.41)

The second of these two equations is a Charnock-like relation in which α̂ is a constant
equal to 0.01. The wave stress ~τw is given by

~τw = ρw

∫ 2π

0

∫ ∞

0
σBE(σ, θ)

~k

k
dσdθ (2.42)

The value of U∗ can be determined for a given wind speed U10 and a given wave spectrum
E(σ, θ) from the above set of equations. In the SWAN model, the iterative procedure of
Mastenbroek et al. (1993) is used. This set of expressions (2.38) through (2.42) is also
used in WAM Cycle 4 (Komen et al., 1994).

2.3.3 Dissipation of wave energy (Sds)

Whitecapping: Komen et al. (1984) formulation

The processes of whitecapping in the SWAN model is represented by the pulse-based model
of Hasselmann (1974). Reformulated in terms of wave number (rather than frequency) so
as to be applicable in finite water depth (cf. the WAMDI group, 1988), this expression is:

Sds,w(σ, θ) = −Γσ̃
k

k̃
E(σ, θ) (2.43)

where σ̃ and k̃ denote the mean frequency and the mean wave number, respectively, and the
coefficient Γ depends on the overall wave steepness. This steepness dependent coefficient,
as given by the WAMDI group (1988), has been adapted by Günther et al. (1992) based
on Janssen (1991a) (see also (Janssen, 1991b)):

Γ = ΓKJ = Cds((1− δ) + δ
k

k̃
)
(

s̃

s̃PM

)p

(2.44)

For δ = 0 the expression of Γ reduces to the expression as used by theWAMDI group (1988).
The coefficients Cds, δ and p are tunable coefficients, s̃ is the overall wave steepness, s̃PM
is the value of s̃ for the Pierson-Moskowitz spectrum (1964): s̃PM =

√
3.02× 10−3. The

overall wave steepness s̃ is defined as

s̃ = k̃
√
Etot (2.45)



22 Chapter 2

The mean frequency σ̃, the mean wave number k̃ and the total wave energy Etot are defined
as (cf. the WAMDI group, 1988):

σ̃ =
(
E−1

tot

∫ 2π

0

∫ ∞

0

1

σ
E(σ, θ)dσdθ

)−1

(2.46)

k̃ =

(
E−1

tot

∫ 2π

0

∫ ∞

0

1√
k
E(σ, θ)dσdθ

)−2

(2.47)

Etot =
∫ 2π

0

∫ ∞

0
E(σ, θ)dσdθ (2.48)

The values of the tunable coefficients Cds and δ and exponent p in this model have been
obtained by Komen et al. (1984) and Janssen (1992) by closing the energy balance of
the waves in idealized wave growth conditions (both for growing and fully developed wind
seas) for deep water. This implies that coefficients in the steepness dependent coefficient
Γ depend on the wind input formulation that is used. Since two different wind input
formulations are used in the SWAN model, two sets of coefficients are used. For the wind
input of Komen et al. (1984; corresponding to WAM Cycle 3; the WAMDI group, 1988):
Cds = 2.36 × 10−5, δ = 0 and p = 4. Janssen (1992) and also Günther et al. (1992)
obtained (assuming p = 4) Cds = 4.10 × 10−5 and δ = 0.5 (as used in the WAM Cycle 4;
Komen et al., 1994).

It is well-known that SWAN underestimates structurally the mean (or peak) wave periods
by 10 to 20%. This has also been observed in the SWAN hindcasts as described by Rogers
et al. (2003). Investigations of Rogers et al. (2003) showed that adjusting the parameter δ
from 0 to 1 leads to an improved prediction of the wave energy at lower frequencies. Because
of this, δ is set to 1 as default since version 40.91A. However, it should be mentioned that
adapting δ without retuning Cds may lead to exceedence of the theoretical limits on wave
height proposed by Pierson and Moskowitz (1964).

Whitecapping: saturation-based model; and wind: Yan model

An alternative description for whitecapping in SWAN is given by Van der Westhuysen et
al. (2007) and Van der Westhuysen (2007), which is an adapted form of the expression of
Alves and Banner (2003). The latter is based on the apparent relationship between wave
groups and whitecapping dissipation. This adaption is due to the fact that it can also be
applied to mixed sea-swell conditions and in shallow water. This was done by removing
the dependencies on mean spectral steepness and wavenumber in the original expression,
and by applying source term scaling arguments for its calibration (see below). This led to
the following expression for whitecapping dissipation

Sds,break(σ, θ) = −C ′
ds

(
B(k)

Br

)p/2

(tanh(kh))(2−p0)/4
√
gkE(σ, θ) (2.49)

in which the density function B(k) is the azimuthal-integrated spectral saturation, which is
positively correlated with the probability of wave group-induced breaking. It is calculated
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from frequency space variables as follows

B(k) =
∫ 2π

0
cgk

3E(σ, θ)dθ (2.50)

and Br = 1.75× 10−3 is a threshold saturation level. The proportionality coefficient is set
to C ′

ds = 5.0 × 10−5. When B(k) > Br, waves break and the exponent p is set equal to a
calibration parameter p0. For B(k) ≤ Br there is no breaking, but some residual dissipation
proved necessary. This is obtained by setting p = 0. A smooth transition between these
two situations is achieved by (Alves and Banner, 2003)

p =
p0
2

+
p0
2
tanh


10



√
B(k)

Br

− 1




 (2.51)

In SWAN, however, p is simply set to p0 (see below).

In Van der Westhuysen (2007) the dissipation modes of breaking and non-breaking waves
are separated, so that they are active over different parts of the spectrum:

Sds,w(σ, θ) = fbr(σ)Sds,break + [1− fbr(σ)]Sds,non−break , (2.52)

where Sds,break is the contribution by breaking waves (2.49), and Sds,non−break dissipation
by means other than breaking (e.g. turbulence). The changeover between the two modes
is made with a smooth transition function fbr similar to (2.51):

fbr(σ) =
1

2
+

1

2
tanh


10



√
B(k)

Br

− 1




 (2.53)

Since relatively little is known about the dissipation mechanisms of the non-breaking low-
frequency waves, their dissipation is not modelled in detail. Instead, the expression (2.43)
is used for Sds,non−break, to provide general background dissipation of non-breaking waves.
For this component, the parameter settings of Komen et al. (1984) are applied.

The wind input expression used in saturation-based model is based on that by Yan (1987).
This expression embodies experimental findings that for strong wind forcing, u∗/c > 0.1
say, the wind-induced growth rate of waves depends quadratically on u∗/c (e.g. Plant
1982), whereas for weaker forcing, u∗/c < 0.1 say, the growth rate depends linearly on u∗/c
(Snyder et al., 1981). Yan (1987) proposes an analytical fit through these two ranges of
the form:

βfit = D
(
u∗

c

)2

cos(θ − α) + E
(
u∗

c

)
cos(θ − α) + F cos(θ − α) +H (2.54)

where D,E,F and H are coefficients of the fit. Yan imposed two constraints:

βfit ≈ βSnyder for
U5

c
≈ 1 (or

u∗

c
≈ 0.036) (2.55)
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and
lim

u∗/c→∞
βfit = βPlant (2.56)

in which βSnyder and βPlant are the growth rates proposed by Snyder et al. (1981) and Plant
(1982), respectively. Application of Eqs. (2.55) and (2.56) led us to parameter values of
D = 4.0×10−2,E = 5.52×10−3,F = 5.2×10−5 and H = −3.02×10−4, which are somewhat
different from those proposed by Yan (1987). We found that our parameter values produce
better fetch-limited simulation results in the Pierson and Moskowitz (1964) fetch range
thant the original values of Yan (1987).

Finally, the choice of the exponent p0 in Eqs. (2.49) and (2.51) is made by requiring that
the source terms of whitecapping (Eq. 2.49) and wind input (Eq. 2.54) have equal scaling
in frequency, after Resio et al. (2004). This leads to a value of p0 = 4 for strong wind
forcing (u∗/c > 0.1) and p0 = 2 for weaker forcing (u∗/c < 0.1). A smooth transition
between these two limits, centred around u∗/c = 0.1, is achieved by the expression

p0(σ) = 3 + tanh
[
w
(
u∗

c
− 0.1

)]
(2.57)

where w is a scaling parameter for which a value of w = 26 is used in SWAN. In shallow
water, under strong wind forcing (p0 = 4), this scaling condition requires the additional

dimensionless factor tanh(kh)−1/2 in Eq. (2.49), where h is the water depth.

Whitecapping: dissipation on opposing current

When a wave field meets an adverse current with a velocity that approaches the wave group
velocity, waves are blocked, which may cause steepness-induced breaking and reflection.
Ris and Holthuijsen (1996) show that SWAN underestimates wave dissipation in such
situations, leading to a strong overestimation in the significant wave height. Van der
Westhuysen (2012) proposes a saturation-based whitecapping expression for the required
enhanced dissipation. The dissipation due to current influence is taken to be proportional
to the relative increase in steepness due to the opposing current, expressed in terms of the
relative Doppler shifting rate cσ/σ (2.13):

Swc,curr(σ, θ) = −C ′′
ds max

[
cσ(σ, θ)

σ
, 0

] (
B(k)

Br

)p/2

E(σ, θ) (2.58)

The proportionality coefficient is set to C ′′
ds = 0.8. The remaining parameters are given by

Van der Westhuysen (2007), namely Br = 1.75× 10−3 and p = p0 according to (2.57).

Wind input, whitecapping, and non-breaking dissipation by ST6

The “ST6” source term package was implemented in an unofficial (NRL) version of SWAN
starting in 2008 and initial development was documented in Rogers et al. (2012). (At the
time, it was referred to as “Babanin et al. physics” rather than “ST6”.) ST6 was imple-
mented in the official version of WAVEWATCH III®(WW3) starting in 2010, and this
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implementation was documented in Zieger et al. (2015). Since 2010, developments in the
two models have largely paralleled each other, insofar as most notable improvements are
implemented in both models. As such, the documentation for WW3 (public release ver-
sions 4 or 5) is largely adequate documentation of significant changes to the source terms
in SWAN since the publication of Rogers et al. (2012), and do not need to be repeated
here. We point out three notable exceptions to this.

The first notable difference relates to the SSWELL ZIEGER option in SWAN, for representa-
tion of non-breaking dissipation. The steepness-dependent coefficient for this term, intro-
duced to WW3 in version 5, has not yet been implemented in SWAN. The non-breaking
dissipation instead follows ST6 in WW3 version 4. These two methods are contrasted by
Zieger et al. (2015) in their equations 23 and 28.

The second notable difference is that ST6 in SWAN permits the use of the non-breaking
dissipation of Ardhuin et al. (2010), the SSWELL ARDHUIN option in SWAN. This option is
not available in WW3/ST6, but is instead the non-breaking dissipation used in WW3/ST4.

The third notable difference is that the wind speed scaling which was U = 28u⋆, following
Komen et al. (1984), has been replaced with U = Swsu⋆, where Sws is a free parameter. Use
of Sws > 28 (we use Sws = 32) yields significant improvements to the tail level, correcting
overprediction mean square slope. This necessitates tuning of the a1 and a2 coefficients.
Settings are suggested in the SWAN User Manual. At time of writing, this feature has not
yet been ported to WW3.

Other less notable differences include: changes to linear wind input (Cavaleri and Malanotte-
Rizzoli 1981) in SWAN/ST6, changes to calculation of viscous stress in SWAN/ST6, and
dissipation by viscosity in the water, added to SWAN/ST6.

Bottom friction

The bottom friction models that have been selected for SWAN are the empirical model
of JONSWAP (Hasselmann et al., 1973), the drag law model of Collins (1972) and the
eddy-viscosity model of Madsen et al. (1988). The formulations for these bottom friction
models can all be expressed in the following form:

Sds,b = −Cb
σ2

g2 sinh2 kd
E(σ, θ) (2.59)

in which Cb is a bottom friction coefficient that generally depends on the bottom orbital
motion represented by Urms:

U2
rms =

∫ 2π

0

∫ ∞

0

σ2

sinh2 kd
E(σ, θ)dσdθ (2.60)

Hasselmann et al. (1973) found Cb = CJON = 0.038m2s−3 which is in agreement with
the JONSWAP result for swell dissipation. However, Bouws and Komen (1983) suggest
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a value of CJON = 0.067m2s−3 for depth-limited wind-sea conditions in the North Sea.
This value is derived from revisiting the energy balance equation employing an alternative
deep water dissipation. Recently, in Zijlema et al. (2012) it was found that a unified value
of 0.038m2s−3 can be used if the second order polyomial fit for wind drag of Eq. (2.35) is
employed. So, in SWAN 41.01 this is default irrespective of swell and wind-sea conditions.

The expression of Collins (1972) is based on a conventional formulation for periodic waves
with the appropriate parameters adapted to suit a random wave field. The dissipation rate
is calculated with the conventional bottom friction formulation of Eq. (2.59) in which the
bottom friction coefficient is Cb = CfgUrms with Cf = 0.015 (Collins, 1972)2.

Madsen et al. (1988) derived a formulation similar to that of Hasselmann and Collins
(1968) but in their model the bottom friction factor is a function of the bottom roughness
height and the actual wave conditions. Their bottom friction coefficient is given by

Cb = fw
g√
2
Urms (2.61)

in which fw is a non-dimensional friction factor estimated by using the formulation of
Jonsson (1966) cf. Madsen et al. (1988):

1

4
√
fw

+ log10(
1

4
√
fw

) = mf + log10(
ab
KN

) (2.62)

in which mf = −0.08 (Jonsson and Carlsen, 1976) and ab is a representative near-bottom
excursion amplitude:

a2b = 2
∫ 2π

0

∫ ∞

0

1

sinh2 kd
E(σ, θ)dσdθ (2.63)

and KN is the bottom roughness length scale. For values of ab/KN smaller than 1.57 the
friction factor fw is 0.30 (Jonsson, 1980).

Depth-induced wave breaking

To model the energy dissipation in random waves due to depth-induced breaking, the bore-
based model of Battjes and Janssen (1978) is used in SWAN. The mean rate of energy
dissipation per unit horizontal area due to wave breaking Dtot is expressed as

Dtot = −
1

4
αBJQb(

σ̃

2π
)H2

max = −αBJQbσ̃
H2

max

8π
(2.64)

in which αBJ = 1 in SWAN, Qb is the fraction of breaking waves determined by

1−Qb

lnQb

= −8 Etot

H2
max

(2.65)

2Collins (1972) contains an error in the expression due to an erroneous Jacobian transformation. See
page A-16 of Tolman (1990).
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in which Hmax is the maximum wave height that can exist at the given depth and σ̃ is a
mean frequency defined as

σ̃ = E−1
tot

∫ 2π

0

∫ ∞

0
σE(σ, θ)dσdθ (2.66)

The fraction of depth-induced breakers (Qb) is determined in SWAN with

Qb =





0 , for β ≤ 0.2

Q0 − β2Q0−exp (Q0−1)/β2

β2−exp (Q0−1)/β2 , for 0.2 < β < 1

1 , for β ≥ 1

(2.67)

where β = Hrms/Hmax. Furthermore, for β ≤ 0.5, Q0 = 0 and for 0.5 < β ≤ 1, Q0 =
(2β − 1)2.

Extending the expression of Eldeberky and Battjes (1995) to include the spectral directions,
the dissipation for a spectral component per unit time is calculated in SWAN with:

Sds,br(σ, θ) =
Dtot

Etot

E(σ, θ) = −αBJQbσ̃

β2π
E(σ, θ) (2.68)

The maximum wave height Hmax is determined in SWAN with Hmax = γd, in which γ is
the breaker parameter and d is the total water depth (including the wave-induced set-up if
computed by SWAN). In the literature, this breaker parameter γ is often a constant or it is
expressed as a function of bottom slope or incident wave steepness (see e.g., Galvin, 1972;
Battjes and Janssen, 1978; Battjes and Stive, 1985; Arcilla and Lemos, 1990; Kaminsky
and Kraus, 1993; Nelson, 1987, 1994). In the publication of Battjes and Janssen (1978) in
which the dissipation model is described, a constant breaker parameter, based on Miche’s
criterion, of γ = 0.8 was used. Battjes and Stive (1985) re-analyzed wave data of a number
of laboratory and field experiments and found values for the breaker parameter varying
between 0.6 and 0.83 for different types of bathymetry (plane, bar-trough and bar) with
an average of 0.73. From a compilation of a large number of experiments Kaminsky and
Kraus (1993) have found breaker parameters in the range of 0.6 to 1.59 with an average of
0.79.

An alternative to the bore-based model of Battjes and Janssen (1978) is proposed by
Thornton and Guza (1983). This model can be regarded as an alteration of Battjes and
Janssen with respect to the description of the wave height probability density function.
The total dissipation due to depth-induced breaking is formulated as

Dtot = −
B3σ̃

8πd

∫ ∞

0
H3 pb(H) dH (2.69)

in which B is a proportionality coefficient and pb(H) is the probability density function of
breaking waves times the fraction of breakers, Qb. Based on field observations, the wave
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heights in the surf zone are assumed to remain Rayleigh distributed, even after breaking.
This implies that all waves will break, not only the highest as assumed by Battjes and
Janssen (1978). The function pb(H) is obtained by multiplying the Rayleigh wave height
probability density function p(H), given by

p(H) =
2H

H2
rms

exp

(
−
(

H

Hrms

)2
)

(2.70)

by a weighting function W (H) defined so that 0 ≤ W (H) ≤ 1, to yield

pb(H) = W (H) p(H) (2.71)

Thornton and Guza (1983) proposed the following weighting function in which the fraction
of breaking waves is independent of the wave height:

W (H) = Qb =

(
Hrms

γd

)n

(2.72)

with a calibration parameter n(=4) and a breaker index γ (not to be confused with the Bat-
tjes and Janssen breaker index!). The integral in expression (2.69) can then be simplified,
as follows ∫ ∞

0
H3 pb(H) dH = Qb

∫ ∞

0
H3 p(H) dH =

3

4

√
π Qb H

3
rms (2.73)

Hence,

Dtot = −
3B3σ̃

32
√
πd

Qb H
3
rms (2.74)

2.3.4 Nonlinear wave-wave interactions (Snl)

Quadruplets

In this section two methods are described for the computation of nonlinear interactions
at deep water. The first method is called the DIA method and is relatively crude in the
approximation of the Boltzmann integral. The second one is called the XNL approach and
is implemented in SWAN by G. Ph. van Vledder.

DIA

The quadruplet wave-wave interactions are computed with the Discrete Interaction Ap-
proximation (DIA) as proposed by Hasselmann et al. (1985). Their source code (slightly
adapted by Tolman, personal communication, 1993) has been implemented in the SWAN
model. In the DIA two quadruplet wave number configurations are considered, both with
frequencies:

σ1 = σ2 = σ , σ3 = σ(1 + λ) = σ+ , σ4 = σ(1− λ) = σ− (2.75)

where λ is a coefficient with a default value of 0.25. To satisfy the resonance conditions
for the first quadruplet, the wave number vectors with frequency σ3 and σ4 lie at an angle
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of θ3 = −11.48o and θ4 = 33.56o to the angle of the wave number vectors with frequencies
σ1 and σ2. The second quadruplet is the mirror image of the first quadruplet with relative
angles of θ3 = θ+ = 11.48o and θ4 = θ− = −33.56o. An example of this wave number
configuration is shown in Figure 2.2. See Van Vledder et al. (2000) for further information
about wave number configurations for arbitrary values of λ.
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Figure 2.2: Wave number configuration for λ=0.25 and its position in a discrete frequency-
direction spectrum (from Van Vledder et al., 2000).

Within this discrete interaction approximation, the source term Snl4(σ, θ) for the nonlinear
transfer rate is given by

Snl4(σ, θ) = S∗
nl4(σ, θ) + S∗∗

nl4(σ, θ) (2.76)

where S∗
nl4 refers to the first quadruplet and S∗∗

nl4 to the second quadruplet (the expressions
for S∗∗

nl4 are identical to those for S∗
nl4 for the mirror directions). The DIA exchanges

wave variance at all three wave number vectors involved in a quadruplet wave number
configuration. The rate of change of wave variance due to the quadruplet interaction at
the three frequency-direction bins can be written as




δS∗
nl4(σ, θ)

δS∗
nl4(σ

+, θ+)
δS∗

nl4(σ
−, θ−)


 =




2
−1
−1


Cnl4(2π)

2g−4
(
σ

2π

)11

×
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[
E2(σ, θ)

{
E(σ+, θ+)

(1 + λ)4
+

E(σ−, θ−)

(1− λ)4

}

−2E(σ, θ)E(σ+, θ+)E(σ−, θ−)

(1− λ2)4

]
(2.77)

where Cnl4 = 3×107 by default. Eq. (2.77) conserves wave variance, momentum and action
when the frequencies are geometrically distributed (as is the case in the SWAN model).
The wave variance density at the frequency-direction bins E(σ+, θ+) and E(σ−, θ−) is
obtained by bi-linear interpolation between the four surrounding frequency-direction bins.
Similarly, the rate of change of variance density is distributed between the four surrounding
bins using the same weights as used for the bi-linear interpolation.

In the DIA algorithm, Eq. (2.77) (and its mirror image) is applied to all spectral bins in a
discrete frequency-direction spectrum. Figure 2.2 shows an example of one wave number
configuration and its mirror image in a discrete spectrum. An extended spectral grid is
applied to compute the interactions in the frequency range affected by the parametric
spectral tail.

SWAN has an option to replace bi-linear interpolation of wave variance density using the
nearest bin approach using a weight equal to 1.

Following the WAM group (WAMDI, 1988), the quadruplet interaction in shallow water
with depth d is obtained by multiplying the deep water nonlinear transfer rate by a scaling
factor R(kpd):

Sfinite depth
nl4 = R(kpd)S

deep water
nl4 (2.78)

where R is given by

R(kpd) = 1 +
Csh1

kpd
(1− Csh2kpd)e

Csh3kpd (2.79)

in which kp is the peak wave number of the frequency spectrum. WAMDI (1988) proposes
the following values of the coefficients: Csh1 = 5.5, Csh2 = 5/6 and Csh3 = −5/4. In the
shallow water limit, i.e., kp → 0 the nonlinear transfer rate tends to infinity. Therefore,
a lower limit of kp = 0.5 is applied, resulting in a maximum value of R(kpd) = 4.43. To
increase the model robustness in case of arbitrarily shaped spectra, the peak wave number
kp is replaced by kp = 0.75k̃ (cf. Komen et al., 1994).

XNL (G. Ph. van Vledder)

The second method for calculating the nonlinear interactions in SWAN is the so-called
Webb-Resio-Tracy method (WRT), which is based on the original six-dimensional Boltzmann
integral formulation of Hasselmann (1962, 1963a,b), and additional considerations by Webb
(1978), Tracy and Resio (1982) and Resio and Perrie (1991). A detailed description of the
WRT method and its implementation in discrete spectral wave models like SWAN is given
in Van Vledder (2006). An overview of computational methods for computing the exact
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nonlinear transfer rate is given in Benoit (2005).

The Boltzmann integral describes the rate of change of action density of a particular wave
number due to resonant interactions between pairs of four wave numbers. To interact these
wave numbers must satisfy the following resonance conditions

~k1 + ~k2 = ~k3 + ~k4
σ1 + σ2 = σ3 + σ4

}
. (2.80)

The rate of change of action densityN1 at wave number ~k1 due to all quadruplet interactions
involving ~k1 is given by

∂N1

∂t
=

∫ ∫ ∫
G
(
~k1, ~k2, ~k3, ~k4

)
δ
(
~k1 + ~k2 − ~k3 − ~k4

)
δ (σ1 + σ2 − σ3 − σ4)

× [N1N3 (N4 −N2) +N2N4 (N3 −N1)] d~k2 d~k3 d~k4 , (2.81)

where the action densityN is defined in terms of the wave number vector ~k, N = N(~k). The
term G is a complicated coupling coefficient for which an explicit expression has been given
by Herterich and Hasselmann (1980). In the WRT method a number of transformations
are made to remove the delta functions. A key element in the WRT method is to consider
the integration space for each (~k1, ~k3) combination

∂N1

∂t
= 2

∫
T
(
~k1, ~k3

)
d~k3 , (2.82)

in which the function T is given by

T
(
~k1, ~k3

)
=

∫ ∫
G
(
~k1, ~k2, ~k3, ~k4

)
δ
(
~k1 + ~k2 − ~k3 − ~k4

)

× δ (σ1 + σ2 − σ3 − σ4) θ
(
~k1, ~k3, ~k4

)

× [N1N3 (N4 −N2) +N2N4 (N3 −N1)] d~k2 d~k4 , (2.83)

in which

θ
(
~k1, ~k3, ~k4

)
=





1 when
∣∣∣~k1 − ~k3

∣∣∣ ≤
∣∣∣~k1 − ~k4

∣∣∣
0 when

∣∣∣~k1 − ~k3
∣∣∣ >

∣∣∣~k1 − ~k4
∣∣∣

(2.84)

The delta functions in Eq. (2.83) determine a region in wave number space along which the
integration should be carried out. The function θ determines a section of the integral which
is not defined due to the assumption that ~k1 is closer to ~k3 than ~k2. The crux of the Webb
method consists of using a local co-ordinate system along a so-named locus, that is, the
path in ~k space that satisfies the resonance conditions for a given combination of ~k1 and ~k3.
To that end the (kx, ky) co-ordinate system is replaced by a (s, n) co-ordinate system, where
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s (n) is the tangential (normal) direction along the locus. After some transformations the
transfer integral can then be written as a closed line integral along the closed locus

T
(
~k1, ~k3

)
=

∮
G J θ(~k1, ~k3, ~k4)

× [N1N3 (N4 −N2) +N2N4 (N3 −N1)] ds , (2.85)

in which G is the coupling coefficient and J is the Jacobian term of a function represent-
ing the resonance conditions. The Jacobian term is a function of the group velocities of
interacting wave numbers

J = |~cg,2 − ~cg,4|−1 (2.86)

Numerically, the Boltzmann integral is computed as the finite sum of many line integrals
T for all discrete combinations of ~k1 and ~k3. The line integral (2.85) is solved by dividing
the locus in typically 40 pieces, such that its discretized version is given by

T
(
~k1, ~k3

)
≈

ns∑

i=1

G(si)J(si)P (si) ∆si , (2.87)

in which P (si) is the product term for a given point on the locus, ns is the number of
segments, si is the discrete co-ordinate along the locus, and ∆si is the stepsize. Finally,
the rate of change for a given wave number ~k1 is given by

∂N(~k1)

∂t
≈

nk∑

ik3=1

nθ∑

iθ3=1

T (~k1, ~k3) ∆kik3 ∆θiθ3 (2.88)

where nk and nθ are the discrete number of wave numbers and directions in the computa-
tional spectral grid, respectively. Note that although the spectrum is defined in terms of
the vector wave number ~k, the computational grid in a wave model is more conveniently
defined in terms of the absolute wave number and wave direction (k, θ) to assure direc-

tional isotropy of the calculations. Taking all wave numbers ~k1 into account produces the
complete source term due to nonlinear quadruplet wave-wave interactions. Details of the
computation of a locus for a given combination of the wave numbers ~k1 and ~k3 can be
found in Van Vledder (2006).

It is noted that these exact interaction calculations are extremely expensive, typically
requiring 103 to 104 times more computational effort than the DIA. Presently, these calcu-
lations can therefore only be made for highly idealized test cases involving a limited spatial
grid.

The nonlinear interactions according to the WRTmethod have been implemented in SWAN
using portable subroutines. In this implementation, the computational grid of the WRT
method is based to the discrete spectral grid of SWAN. The WRT method uses a (~k, θ)
grid which is based on the (σ, θ) grid of SWAN. In addition, the WRT routines inherit
the power of the parametric spectral tail as in the DIA. Choosing a higher resolution than
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the computational grid of SWAN for computing the nonlinear interactions is possible in
theory, but this does not improve the results and is therefore not implemented.

Because nonlinear quadruplet wave-wave interactions at high frequencies are important, it
is recommended to choose the maximum frequency of the wave model about six times the
peak frequency of the spectra that are expected to occur in a wave model run. Note that
this is important as the spectral grid determines the range of integration in Eq. (2.88).
The recommended number of frequencies is about 40, with a frequency increment factor
1.07. The recommended directional resolution for computing the nonlinear interactions is
about 10◦. For specific purposes other resolutions may be used, and some testing with
other resolutions may be needed.

An important feature of most algorithms for the evaluation of the Boltzmann integral is
that the integration space can be pre-computed. In the initialization phase of the wave
model the integration space, consisting of the discretized paths of all loci, together with the
interaction coefficients and Jacobians, are computed and stored in a binary data file. For
each discrete water depth such a data file is generated and stored in the work directory.
The names of these data files consist of a keyword, ”xnl4v5”, followed by the keyword
”xxxxx”, with xxxxx the water depth in a certain unit (meters by default), or 99999 for
deep water. The extension of the binary data file is ”bqf” (of Binary Quadruplet File). If
a BQF file exists, the program checks if this BQF file has been generated with the proper
spectral grid. If this is not the case, a new BQF file is generated and the existing BQF file
is overwritten. During a wave model run with various depths, the optimal BQF is used,
by looking at the ’nearest’ water depth dN for which a valid BQF file has been generated.
In addition, the result is rescaled using the DIA scaling (2.79) according to

Sd
nl4 = SdN

nl4

R(kpd)

R(kpdN)
. (2.89)

Triads

In this section two methods are described for the computation of nonlinear interactions at
shallow water. The first method is called the LTA method and is based on a Boussinesq
theory. It generates second (and possibly fourth and eighth) higher harmonics, which are,
however, persistent over large distances away from the surf zone. The second one, called
the DCTA method, heuristically captures the k−4/3 spectral tail at shallow water depths,
while generating all transient sub and super harmonics.

LTA

The Lumped Triad Approximation (LTA) of Eldeberky (1996), which is a slightly adapted
version of the Discrete Triad Approximation (DTA) of Eldeberky and Battjes (1995), is
used in SWAN in each spectral direction:

Snl3(σ) = S−
nl3(σ) + S+

nl3(σ) (2.90)
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with
S+
nl3(σ) = max

[
0, α cσ cg,σ J

2 sin(−β)
{
E2(σ/2)− 2E(σ/2)E(σ)

}]
(2.91)

and
S−
nl3(σ) = −2S+

nl3(2σ) (2.92)

in which α is a tunable scaling factor that controls the strength of triad interactions, cσ
and cg,σ are the phase and group velocity, respectively, at σ, β is the biphase of self-self
interaction, and finally, J is the interaction coefficient based on the Boussinesq theory of
Madsen and Sørensen (1993), as follows

J =
k2
σ/2(gd+ 2c2σ/2)

kσd(gd+
2
15
gd3k2

σ − 2
5
σ2d2)

(2.93)

As proposed by Eldeberky (1996), the biphase β is approximated as

β = −π

2
+

π

2
tanh(

m

Ur
) (2.94)

with Ursell number Ur given by

Ur =
g Hm0

8
√
2

(
Tm01

π d

)2

(2.95)

and m a tunable coefficient.

Eldeberky and Battjes (1995) proposed m = 0.2 based on a laboratory experiment. How-
ever, our recent experience shows that this relatively low value triggers some instability
that artificially amplifies higher harmonics in the triad computation. Yet it will be less
prone to error if the value of m is increased. As suggested by Doering and Bowen (1995),
the optimal agreement of Eq. (2.94) with the data of some field measurements is obtained
with a value of m = 0.63, which also reflects a robust numerical performance.

Recently, De Wit (2022) proposed a biphase parametrization that is derived from SWASH
experiments demonstrating the dependence of biphase on local bed slope and local peak
wave period. This parametrization is implemented in SWAN version 41.45. Note that
this parametrization allows the biphase values to be positive, which potentially makes it
possible to include the effect of recurrence (i.e. to transfer wave energy back to the primary
peak).

DCTA

Booij et al. (2009) proposed a heuristic triad formulation, in analogy with the quadruplet
interaction, that accounts for both the generation of all super harmonics and the trans-
ition to a universal tail of k−4/3. The original expression for the Distributed Collinear Triad
Approximation (DCTA) is given by

Snl3(σ1) = λ
sin(−β) k̃1−p

d2

∫ ∞

0

tanh kd

kd
N(σ3)

[
σ2 cg,2k

p
2 N(σ2)−σ1 cg,1k

p
1 N(σ1)

]
dσ2 (2.96)
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for the quasi-resonance conditions σ3 = |σ2− σ1| (note that the frequencies match but the
wave numbers not). Here, λ is a calibration coefficient that controls the magnitude of triad
interactions, k̃ = σ̃/

√
gd with σ̃ the mean frequency as given by Eq. (2.66), p = 4/3 is a

shape coefficient to force the high-frequency tail, and k = (k1+k2+k3)/3 is a characteristic
wave number of the triad. Note that the factor tanh(kd)/kd in Eq. (2.96) accounts for the
increasing resonance mismatch with increasing wave number (Booij et al., 2009).

However, recent study (Zijlema, 2022) has demonstrated that the following energy-flux
conservative expression

Snl3(σ1) = λ cg,1
sin(−β) k̃2−p

σ̃2 d2

∫ ∞

0

(
tanh kd

kd

)4

E(σ3)
[
cg,2k

p
2 E(σ2)− cg,1k

p
1 E(σ1)

]
dσ2

(2.97)
yields improved prediction accuracy over the original one (2.96). This revised formulation
is implemented in version 41.45.

In the above DCTA formulations, a collinear approximation is applied by which it is as-
sumed that the primary contribution to the triad interactions arises from collinear inter-
actions. Effectively, the triad source term for each directional bin is taken independently
of other directional bins. An extension to noncollinear triad interactions is proposed by
Benit and Reniers (2022) which includes a transfer reduction scaling based on the angle
difference between two noncollinear interacting components. The final expression yields

Snl3(σ1, θ1) = λ cg,1
sin(−β) k̃2−p

σ̃2 d2
×

∫ 2π

0

∫ ∞

0

(
tanh kd

kd

)4 [G(∆θ23)

G(0)

]2
E(σ3, θ3)

[
cg,2k

p
2 E(σ2, θ2)− cg,1k

p
1 E(σ1, θ1)

]
dσ2 dθ2

(2.98)

with G(∆θnm) the transfer function of Sand (1982) and ∆θnm = θn − θm.

As a final note, the triad wave-wave interactions due to either LTA or DCTA are calculated
only for Ur ≥ 0.1.

2.3.5 Wave damping due to vegetation

SWAN has an option to include wave damping over a vegetation field (mangroves, salt
marshes, etc.) at variable depths. A popular method of expressing the wave dissipation
due to vegetation is the cylinder approach as suggested by Dalrymple et al. (1984). Here,
energy losses are calculated as actual work carried out by the vegetation due to plant
induced forces acting on the fluid, expressed in terms of a Morison type equation. In this
method, vegetation motion such as vibration due to vortices and swaying is neglected.
For relatively stiff plants the drag force is considered dominant and inertial forces are
neglected. Moreover, since the drag due to friction is much smaller than the drag due
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to pressure differences, only the latter is considered. Based on this approach, the time-
averaged rate of energy dissipation per unit area over the entire height of the vegetation is
given by

εv =
2

3π
ρCDbvNv

(
gk

2σ

)3
sinh3 kαh+ 3 sinh kαh

3k cosh3 kh
H3 (2.99)

where ρ is the water density, CD is the drag coefficient, bv is the stem diameter of cylinder
(plant), Nv is the number of plants per square meter, αh is the vegetation height, h is the
water depth and H is the wave height. This formula was modified by Mendez and Losada
(2004) for irregular waves. The mean rate of energy dissipation per unit horizontal area
due to wave damping by vegetation is given by

< εv >=
1

2
√
π
ρC̃DbvNv

(
gk

2σ

)3
sinh3 kαh+ 3 sinh kαh

3k cosh3 kh
H3

rms (2.100)

with C̃D is the bulk drag coefficient that may depend on the wave height. This is the only
calibration parameter required for a given plant type.

To include wave damping due to vegetation in SWAN, Eq. (2.27) will be extended with
Sds,veg based on Eq. (2.100). A spectral version of the vegetation dissipation model of
Mendez and Losada can be obtained by expanding Eq. (2.100) to include frequencies and
directions as follows

Sds,veg(σ, θ) =
Dtot

Etot

E(σ, θ) (2.101)

with

Dtot = −
1

2g
√
π
C̃DbvNv

(
gk̃

2σ̃

)3
sinh3 k̃αh+ 3 sinh k̃αh

3k cosh3 k̃h
H3

rms (2.102)

where the mean frequency σ̃, the mean wave number k̃ are given by Eqs. (2.46) and (2.47),
respectively. With H2

rms = 8Etot, the final expression reads

Sds,veg = −
√
2

π
g2C̃DbvNv

(
k̃

σ̃

)3
sinh3 k̃αh+ 3 sinh k̃αh

3k cosh3 k̃h

√
EtotE(σ, θ) (2.103)

Apart from extending the Mendez and Losada’s formulation to a full spectrum, the possib-
ility to vary the vegetation vertically is included. The contribution of each vertical segment
is calculated individually with the total energy dissipation equal to the sum of the dissip-
ation in each layer up till the still water level. With this implementation of the differences
in characteristics of each layer, plants such as mangrove trees may be conveniently input
into the SWAN model. The layer-wise segmentation is implemented by integration of the
energy dissipation over height as follows

Sds,veg =
I∑

i=1

Sds,veg,i (2.104)
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where I the number of vegetation layers and i the layer under consideration with the energy
dissipation for layer i. First, a check is performed to establish whether the vegetation is
emergent or submergent relative to the water depth. In case of submergent vegetation the
energy contributions of each layer are added up for the entire vegetation height. In case
of emergent vegetation only the contributions of the layers below the still water level are
taken into account. The implementation of vertical variation is illustrated in Figure 2.3.
The energy dissipation term for a given layer i therefore becomes

Sds,veg,i = −
√
2

π
g2C̃D,ibv,iNv,i

(
k̃

σ̃

)3√
Etot

(
sinh3 k̃αih− sinh3 k̃αi−1h

)
+ 3

(
sinh k̃αih− sinh k̃αi−1h

)

3k cosh3 k̃h
E(σ, θ) (2.105)

The corresponding terms for each layer can then be added and the total integrated as
described earlier to obtain the energy dissipation over the entire spectrum. Here h is the
total water depth and αi the ratio of the depth of the layer under consideration to the total
water depth up to the still water level, such that

I∑

i=1

αi ≤ 1 (2.106)

h
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h
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+Sveg Sveg,1 Sveg,2=

Figure 2.3: Layer schematization for vegetation.

Finally, in addition to the vertical variation, the possibility of horizontal variation of the
vegetation characteristics is included as well. This inclusion enables the vegetation in a
given region to be varied so as to reflect real density variations in the field. Since, the
parameters C̃D, bv and Nv are used in a linear way, we can use Nv as a control parameter
to vary the vegetation factor Vf = C̃DbvNv spatially, by setting C̃D = 1 and bv = 1, so that
Vf = Nv.

An alternative vegatation model is due to Jacobsen et al. (2019) for waves propagating
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over a canopy, with which the associated energy dissipation is frequency dependent. The
spectral distribution of the dissipation is given by

δv = 2ΓSu

√
2mu,0

π

where Su is the velocity spectrum

Su =

(
σ cosh k(z + h)

sinh kh

)2

Sη

with Sη the energy density spectrum, i.e. E(σ). The zeroth moment of the velocity
spectrum is computed as

mu,0 =
∫ ∞

0
Su df

Furthermore,

Γ =
1

2
ρCDbvNv α

3
u

with αu a velocity reduction factor.

The depth-integrated frequency-dependent dissipation is then found to be

Sds,veg = −
1

ρg

∫ −h+hv

−h
δv dz

with hv the canopy height. The vertical integration is approximated using the Simpson’s
rule.

2.3.6 Wave damping due to sea ice

SWAN has an option to include wave dissipation by sea ice. Sea ice has two effects,
direct and indirect. A direct dissipation of wave energy occurs due to the presence of
sea ice. This dissipation is represented in SWAN using empirical formula. The temporal
exponential decay rate of energy is

Dice = Sice/E = −2 cg ki
where Sice is the sea ice sink term, and E is the wave energy spectrum. Here, ki (in 1/m) is
the linear exponential attenuation rate of wave amplitude in space, a(x) = H0 exp(−ki x).
The factor 2 above provides a conversion from amplitude decay to energy decay. The group
velocity cg provides conversion from spatial decay to temporal decay. Sice and E vary with
frequency and direction.

R19

In SWAN version 41.31, one option for this dissipation was available. This is a paramet-
erization described in Collins and Rogers (2017) and is similar to the ‘IC4M2’ method
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implemented in the WAVEWATCH III model. That method, in turn, is a generalization of
the formula proposed by Meylan et al. (2014). This implementation in SWAN is described
in Rogers (2019), and so in the present version of SWAN, it is denoted as the ‘R19’. With
it, the model ki may vary with frequency according to

ki (f) = c0 + c1 f + c2 f
2 + c3 f

3 + c4 f
4 + c5 f

5 + c6 f
6

with c0 to c6 the user-defined polynomial coefficients. These coefficients are dimensional;
e.g. c2 has units of s2/m.

The default R19 setting is the case of c2 =1.06×10−3 s2/m and c4 =2.3×10−2 s4/m. This
recovers the polynomial of Meylan et al. (2014), calibrated for a case of ice floes, mostly
10 to 25 m in diameter, in the marginal ice zone near Antarctica. Another calibration, for
a case that is similar except with relatively thinner ice, from Rogers et al. (2021a) is c2
=0.208×10−3 s2/m and c4 =5.18×10−2 s4/m. Other polynomials are provided in Rogers
et al. (2018). An example is for a case of pancake and frazil ice: c2 =0.284×10−3 s2/m
and c4 =1.53×10−2 s4/m.

This ‘R19’ method does not depend on ice thickness. In version 41.41, three new methods
are introduced which depend on ice thickness, denoted as ‘D15’, ‘M18’, and ‘R21B’.

D15

The ‘D15’ method is a purely empirical formula from Doble et al. (2015), ki = Chf,Df
2.13hice,

with default Chf,D = 0.1 based on the same study, for pancake ice in the marginal ice zone
(MIZ) of the Weddell Sea (Antarctica).

M18

The ‘M18’ method is the “Model with Order 3 Power Law” proposed by Meylan et al.
(2018). This is a simple viscous model of the form ki = Chf,Mh1

icef
3, where Chf,M includes

a viscosity parameter. Our implementation here has a default Chf,M = 0.059 based on
calibration to the Rogers et al. (2021a) dataset (broken floes in the Antarctic MIZ) by
Rogers et al. (2021b). Two earlier calibrations were performed by Liu et al. (2020):
Chf,M = 0.00751 for a case of broken floes in the Antarctic MIZ and Chf,M = 0.0351 for a
case of pancake and frazil ice near the Beaufort Sea.

R21B

The ‘R21B’ method combines the Reynolds number non-dimensionalization proposed by
Yu et al. (2019) with a simple monomial power fitting. This is documented in Rogers et al.

(2021b). The resulting dimensional formula is ki = Chfh
n/2−1
ice fn. Those authors calibrate

it to the dataset of Rogers et al. (2021a), giving n = 4.5 and Chf = 2.9.

Source term scaling

An indirect effect of sea ice is a reduction of wind input (scaling). The areal fraction of
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sea ice is given as 0 ≤ aice ≤ 1. The effect on wind input is a scaling of the wind input
source functions by open water fraction 1− aice,

Sin ← (1− aice) Sin

with Sin the wind input term; see Eq. (2.32). This effect can be reduced or disabled (see
command SET [icewind].)

Also, the ice source function is scaled with areal ice fraction, as follows

Sice ← aice Sice

The impact of sea ice on source terms in the real ocean is not known with any certainty,
and instead is primarily based on intuition and guesswork; see discussion in Rogers et al.
(2016). Nonlinear interactions are not scaled.

The sea ice treatment here has the following limitations:

• reflection and scattering by sea ice is not represented, and

• floe size distribution is not represented.

2.3.7 Bragg scattering

As waves propagate from deep towards shallow water they interact with the seabed. Be-
cause of the large scale variations of the bottom topography (at the scale of many tens
or hundreds of wave lengths), waves tend to shoal and refract towards the coast. On the
other hand, irregular bed variations at shorter scales (i.e. within a few wave lengths) result
in forward and backward scattering of waves, known as the Bragg scattering. In general,
forward scattering counteracts the directional narrowing caused by refraction and leads
to a broadening of the directional spreading, whereas backward scattering attenuates the
incident wave field (Ardhuin et al., 2003).

Ardhuin and Herbers (2002) developed a theory for the Bragg scattering of surface waves
and proposed a source term that can be implemented in spectral wave models. This source
term describes the lowest order resonant interaction between a triad of two wave com-
ponents with the same frequency but different wave number vectors ~k and ~k′ (and thus
the associated directions θ and θ′), and a bottom component that has the difference wave

number ~l = ~k − ~k′. This source term is given by

Sbragg(σ, θ) = χ
∫ 2π

0
cos2(θ − θ′)FB(~l) [E(σ, θ′)− E(σ, θ)] dθ′ (2.107)

where FB is the bed elevation spectrum representing the random (small-scale) variability
of the seabed, and χ is the coupling coefficient and is expressed as follows

χ =
2π σ2 k3

cg sinh2(2kd)
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with k = |~k|. (Note that in contrast to the study of Ardhuin and Herbers (2002), the
present source term is formulated in (σ, θ)−space.)

The source term Sbragg is estimated by means of a bottom spectrum FB at the difference

wave number ~l. In SWAN, two options are available to input this spectrum.

The first option is to input a detailed bottom topography that captures the irregular
variations on top of a gently sloping bed. Using a bilinear fit, the large-scale bottom is
separated from the high-resolution bathymetric data. Here, the large-scale bathymetry is
represented by the mean bed elevation d(~x) given at the computational grid points, so that
refraction is resolved properly. The remainder, that is, the small-scale bed modulation, is
used to compute the bottom spectrum FB based on a Fourier transform from ~x to ~k.

With the second option, the bottom spectrum FB(~k) is assumed to be obtained elsewhere
and is the same at all computational grid points. Furthermore, the inputted bathymetry
d may vary on a scale at which refraction is dominant.

For evaluating the Bragg scattering, an upper limit to the bathymetric variability is im-
posed. The cutoff (k/l)max, displaying the ratio between surface and bed elevation wave

numbers with l = |~l|, is set to 5 (Ardhuin and Herbers, 2002).

2.3.8 First- and second-generation model formulations in SWAN

The source term Stot for the first- and second-generation formulation (relaxation model)
of SWAN is (Holthuijsen and de Boer, 1988):

Stot =





Sin = A+ BE , if E < Elim and |θ − θw| < π
2

Sds,w = Elim−E
τ

, if E > Elim and |θ − θw| < π
2

0 , if E > Elim and |θ − θw| > π
2

(2.108)

where Sin and Sds,w represent input by wind and decay for over-developed sea states,
respectively, A and BE are a linear and exponential growth term, respectively, E is the
spectral density, Elim is the saturated spectrum, τ is a time scale and θ and θw are the
discrete spectral wave direction and the wind direction, respectively. The expressions for
the source terms Sin and Sds,w have been modified for shallow water applications (N. Booij
and L.H. Holthuijsen, personal communication, 1996) and are given below.

The distinction between first- and second-generation is only in the formulation of the
saturated spectrum Elim as outlined below.

Linear and exponential growth

The linear growth term A is given by an expression due to Cavaleri and Malanotte-Rizolli
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(1981) as adapted by Holthuijsen and de Boer (1988) and Holthuijsen et al. (1996):

A =





β1

2π
π
g2
C2

drag

(
ρa
ρw

)2
(U10 max[0, cos(θ − θw)])

4 , σ ≥ 0.7σPM,d

0 , σ < 0.7σPM,d

(2.109)

where β1 is a coefficient that has been tuned to be β1 = 188, Cdrag is a drag coefficient equal
to Cdrag = 0.0012 and σPM,d is the fully developed peak frequency including the effect of
shallow water and is estimated from the depth dependent relation of the Shore Protection
Manual (1973):

σPM,d =
σPM

tanh(0.833d̃0.375)
(2.110)

with the dimensionless depth

d̃ =
gd

U2
10

(2.111)

The Pierson-Moskowitz (1964) frequency is

σPM =
0.13g

U10

2π (2.112)

The exponential growth term BE is due to Snyder et al. (1981) rescaled in terms of U10

as adapted by Holthuijsen and de Boer (1988) and Holthuijsen et al. (1996):

B = max[0, β2
5

2π

ρa
ρw

(
U10

σ/k
cos(θ − θw)− β3)]σ (2.113)

in which the coefficients β2 and β3 have been tuned to be β2 = 0.59 and β3 = 0.12.

Decay

If the spectral densities are larger than the wind-dependent saturation spectrum Elim, (e.g.,
when the wind decreases), energy is dissipated with a relaxation model:

Sds,w(σ, θ) =
Elim(σ, θ)− E(σ, θ)

τ(σ)
(2.114)

where τ(σ) is a time scale given by

τ(σ) = β4

(
2π

σ

)2 g

U10 cos(θ − θw)
(2.115)

in which the coefficient β4 has been tuned to be β4 = 250.

Saturated spectrum
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The saturated spectrum has been formulated in term of wave number with a cos2−directional
distribution centred at the local wind direction θw. It is essentially an adapted Pierson-
Moskowitz (1964) spectrum:

Stot =





αk−3

2cg
exp

{
−5

4
( σ
σPM,d

)−4
}

2
π
cos2(θ − θw) , for |θ − θw| < π

2

0 , for |θ − θw| ≥ π
2

(2.116)

For the first-generation formulation, the scale factor α is a constant and equals

α = 0.0081 (2.117)

For the second-generation formulation, the scale factor α depends on the total dimension-

less wave energy Ẽtot,sea of the wind sea part of the spectrum and the dimensionless depth
d̃:

α = max[(0.0081 + (0.013− 0.0081)e−d̃), 0.0023Ẽ−0.223
tot,sea ] (2.118)

where the total dimensionless wind sea wave energy Ẽtot,sea is given by

Ẽtot,sea =
g2Etot,sea

U4
10

(2.119)

with

Etot,sea =
∫ θw+π/2

θw−π/2

∫ ∞

0.7σPM,d

E(σ, θ)dσdθ (2.120)

The maximum value of α is taken to be 0.155. This dependency of α on the local dimen-
sionless energy of the wind sea permits an overshoot in the wave spectrum under wave
generation conditions. For deep water α = 0.0081 as proposed by Pierson and Moskowitz
(1964).

2.4 The influence of ambient current on waves

Waves are subject to the influence of ambient current, when they propagate on it. The
ambient current can be tidal current, ocean current, local wind generated current, river
current and wave generated current. It has been observed that current affects the growth
and decay of waves (Yu, 1952; Hedges et al., 1985; Lia et al., 1989). The observations
have shown that in a strong opposite current the wave steepness and wave height increase
significantly. These changes take place rapidly where the waves are blocked by the current,
often accompanied with current-induced whitecapping and wave reflections. Moreover, at
the blocking frequency action is also partially transferred away from the blocking frequency
to higher and lower frequencies by nonlinear wave-wave interactions (Ris, 1997).

It was Longuet-Higgins and Stewart (1960, 1961, 1962) who founded the theoretical de-
scription of wave-current interactions. Since then, many additional results of wave-current
interactions have been published. If waves propagate in the presence of ambient current,
action density is conserved whereas energy density is not. Therefore, in SWAN the action
balance equation has been adopted.
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2.5 Modelling of obstacles

SWAN can estimate wave transmission through a (line-)structure such as a breakwater
(dam). It is assumed that the obstacle is narrow compared to the grid size, i.e. a subgrid
approach is applied. If in reality the width is large compared with grid size, the feature
preferably is to be modeled as a bathymetric feature. The following text refers to narrow
obstacles.

Such an obstacle will affect the wave field in three ways:

• it will reduce the wave height of waves propagating through or over the obstacle all
along its length,

• it will cause waves to be reflected, and

• it will cause diffraction around its end(s).

In irregular, short-crested wave fields, however, it seems that the effect of diffraction is
small, except in a region less than one or two wavelengths away from the tip of the obstacle
(Booij et al., 1993). Therefore the model can reasonably account for waves around an
obstacle if the directional spectrum of incoming waves is not too narrow, unless one is
interested in the wave field deep into the shadow zone.

Since obstacles usually have a transversal area that is too small to be resolved by the
bottom grid in SWAN, an obstacle is modelled as a line in the computational area. See
Section 3.12 for the numerical implementation of obstacles in SWAN.

2.5.1 Transmission

There are several mechanisms for transmission of waves. In SWAN, the user may compute
transmission of waves passing over a dam with a closed surface or may choose a constant
transmission coefficient.

If the crest of the breakwater is at a level where (at least part of the) waves can pass
over, the transmission coefficient Kt (defined as the ratio of the (significant) wave height
at the downwave side of the dam over the (significant) wave height at the upwave side) is a
function of wave height and the difference in crest level and water level. It must be noted
that the transmission coefficient can never be smaller than 0 or larger than 1. In SWAN,
two expressions can be employed. The first is taken from Goda et al. (1967):

Kt =





1 , F
Hi

< −β − α

0.5(1− sin( π
2α
( F
Hi

+ β))) , −β − α ≤ F
Hi
≤ α− β

0 , F
Hi

> α− β
(2.121)

where F = h−d is the freeboard of the dam and where Hi is the incident (significant) wave
height at the upwave side of the obstacle (dam), h is the crest level of the dam above the
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reference level (same as reference level of the bottom), d the mean water level relative to
the reference level, and the coefficients α, β depend on the shape of the dam (Seelig, 1979)
as given in Table 2.1. It should be noted that this formula is only valid for slopes more
gentle than 1:0.7 (1.4:1 or 55 degrees). Expression (2.121) is based on experiments in a

Table 2.1: Parameters for transmission according to Goda et al. (1967).
case α β
vertical thin wall 1.8 0.1
caisson 2.2 0.4
dam with slope 1:3/2 2.6 0.15

wave flume, so strictly speaking it is only valid for normal incidence waves. Since there are
no data available on oblique waves, it is assumed that the transmission coefficient does not
depend on direction. Furthermore, it is assumed that the frequencies remain unchanged
over an obstacle (only the energy scale of the spectrum is affected and not the spectral
shape).

For an impermeable rough low-crested dam, the following expression of d’Angremond et
al. (1996) is chosen:

Kt = −0.4
F

Hi

+ 0.64(
Bk

Hi

)−0.31(1− e−0.5ξp) (2.122)

with Bk the crest width and ξp ≡ tanα/
√
Hi/L0p the breaker parameter. For this, the

slope of the breakwater α must be given and L0p = gT 2
p /2π is the deep water wave length.

The restriction to eq. (2.122) is as follows

0.075 ≤ Kt ≤ 0.9 (2.123)

In most cases, the crest width is such that Bk < 10Hi. However, if this is not the case, the
following expression should be used instead of (2.122):

Kt = −0.35
F

Hi

+ 0.51(
Bk

Hi

)−0.65(1− e−0.41ξp) (2.124)

with the restriction:

0.05 ≤ Kt ≤ −0.006
Bk

Hi

+ 0.93 (2.125)

The formula’s (2.122) and (2.124) give a discontinuity at Bk = 10Hi. Following Van der
Meer et al. (2005), for practical application, Eq. (2.122) is applied if Bk < 8Hi, Eq.
(2.124) if Bk > 12Hi and in between (8Hi ≤ Bk ≤ 12Hi), a linear interpolation is carried
out.
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2.5.2 Reflection

Often there is reflection against quays or breakwaters. Depending on the nature of the
obstacle (a smooth surface or a rubble-mound breakwater) the reflected wave field can be
more or less scattered. SWAN is able to diffuse the reflection over wave components in
different directions.

2.5.3 Freeboard dependent reflection and transmission

In case an obstacle becomes flooded, its reflection and transmission properties change as
a function of the relative freeboard, defined as the ratio of the difference in dam height
and the water level by the (incident) significant wave height, i.e. F/Hs. For transmission
this dependence can be schematized as described in Section 2.5.1, where transmission
increases with increasing freeboard. Another method is to scale the fixed reflection and
fixed transmission coefficients as a function of the relative freeboard. This dependence is
expressed using a tanh function in which a parameter γ is employed to define the range
(in terms of the relative freeboard) over which the fixed reflection and/or transmission
coefficients varies between their minimum and maximum values. This dependency is given
by

R =

[
1 + tanh

(
2

γR

F

Hs

)]
R0

2

in case of reflection with a fixed value R0, and

T =

[
1 + tanh

(
− 2

γT

F

Hs

)]
T0

2

in case of transmission with a fixed value T0.

This parameterization has two gamma parameters, one for the reflection and one for the
transmission. The parameterization is shown schematically in Figure 2.4. In this figure it
is assumed that the fixed reflection coefficient R0 has a value of 0.6, and that the maximum
or fixed transmission coefficient is equal to T0 = 0.9. In this example the significant wave
height has a value of 2 m. The structure of above equations is such that the parameters γR

and γT coincide with the positions where the reflection and transmission coefficient have
their minimum or maximum value.

Quay option
The above parameterization works for an obstacle in water of a certain depth, irrespective
from which side the waves are propagating. For handling this method for a quay, it is
assumed that the water depth on each side of the obstacle line are different, where the
quay area is less deep than the deeper area in front of the quay. This requires special
attention of the model setup to ensure that the depths are different on the grid points at
each side of the obstacle representing the edge of a quay. When waves propagate from
the deeper side to the shallower (quay) side of the obstacle, the same method is used as
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Figure 2.4: Parameterization of the reflection coefficient R and transmission coefficient T
as a function of the relative freeboard F/Hs.

above. When waves travel from the shallower part to the deeper part, it is assumed that
the reflection coefficient R = 0 and the transmission coefficient T = 1.

2.5.4 Diffraction

To accommodate wave diffraction in SWAN simulations, a phase-decoupled refraction-
diffraction approximation is suggested (Holthuijsen et al., 2003). It is expressed in terms
of the directional turning rate of the individual wave components in the 2D wave spec-
trum. The approximation is based on the mild-slope equation for refraction and diffraction,
omitting phase information. This approach is thus consistent with the assumption of a
quasi-homogeneous wave field. However, see Section 2.7 for the discussion of the inclusion
of wave statistics of inhomogeneous wave fields due to diffraction.

In a simplest case, we assume there are no currents. This means that cσ = 0. Let denotes
the propagation velocities in geographic and spectral spaces for the situation without dif-
fraction as cx,0, cy,0 and cθ,0. These are given by

cx,0 =
∂ω

∂k
cos θ , cy,0 =

∂ω

∂k
sin θ , cθ,0 = −

1

k

∂ω

∂h

∂h

∂n
(2.126)

where k is the wave number and n is perpendicular to the wave ray. We consider the
following eikonal equation

K2 = k2(1 + δ) (2.127)

with δ denoting the diffraction parameter as given by

δ =
∇(ccg∇

√
E)

ccg
√
E

(2.128)
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where E(x, y) is the total energy of the wave field (∼ H2
s ). Due to diffraction, the propaga-

tion velocities are given by

cx = cx,0δ , cy = cy,0δ , cθ = cθ,0δ −
∂δ

∂x
cy,0 +

∂δ

∂y
cx,0 (2.129)

where

δ =
√
1 + δ (2.130)

In early computations, the wave fields often showed slight oscillations in geographic space
with a wavelength of about 2∆x in x−direction. These unduly affected the estimations
of the gradients that were needed to compute the diffraction parameter δ. The wave field
was therefore smoothed with the following convolution filter:

En
i,j = En−1

i,j − 0.2[Ei−1,j + Ei,j−1 − 4Ei,j + Ei+1,j + Ei,j+1]
n−1 (2.131)

where i, j is a grid point and the superscript n indicates iteration number of the convolution
cycle. The width of this filter (standard deviation) in x−direction εx, when applied n times
is

εx ≈
1

2

√
3n∆x (2.132)

By means of computations, n = 6 is found to be an optimum value (corresponding to spatial
resolution of 1/5 to 1/10 of the wavelength), so that εx ≈ 2∆x. For the y−direction, the
expressions are identical, with y replacing x. Note that this smoothing is only applied
to compute the diffraction parameter δ. For all other computations the wave field is not
smoothed.

Diffraction in SWAN should not be used if,

• an obstacle or coastline covers a significant part of the down-wave view, and

• the distance to that obstacle or coastline is small (less than a few wavelengths), and

• the reflection off that obstacle or coastline is coherent, and

• the reflection coefficient is significant.

This implies that the SWAN diffraction approximation can be used in most situations near
absorbing or reflecting coastlines of oceans, seas, bays, lagoons and fjords with an occasional
obstacle such as (barrier) islands, breakwaters, or headlands but not in harbours or in front
of reflecting breakwaters or near wall-defined cliff walls. Behind breakwaters (which may
be reflecting), the SWAN results seem reasonable if the above conditions are met.
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2.6 Wave-induced set-up

In a (geographic) 1D case the computation of the wave-induced set-up is based on the
vertically integrated momentum balance equation which is a balance between the wave force
(gradient of the wave radiation stress normal to the coast) and the hydrostatic pressure
gradient (note that the component parallel to the coast causes wave-induced currents but
no set-up).

dSxx

dx
+ ρgH

dη

dx
= 0 (2.133)

where d is the total water depth (including the wave-induced set-up) and η is the mean
surface elevation (including the wave-induced set-up) and

Sxx = ρg
∫
[n cos2 θ + n− 1

2
]Edσdθ (2.134)

is the radiation stress tensor.

Observation and computations based on the vertically integrated momentum balance equa-
tion of Dingemans et al. (1987) show that the wave-induced currents are mainly driven
by the divergence-free part of the wave forces whereas the set-up is mainly due to the
rotation-free part of these forces. To compute the set-up in 2D, it would then be sufficient
to consider the divergence of the momentum balance equation. If the divergence of the
acceleration in the resulting equation is ignored, the result is:

∂Fx

∂x
+

∂Fy

∂y
− ∂

∂x
(ρgH

∂η

∂x
)− ∂

∂y
(ρgH

∂η

∂y
) = 0 (2.135)

This approximation can only be applied to open coast (unlimited supply of water from
outside the domain, e.g. nearshore coasts and estuaries) in contrast to closed basin, e.g.
lakes, where this approach should not be used.

2.7 Quasi-coherent modelling

The action balance equation (2.16) describes the evolution of the action density spectrum
N(~x, t; σ, θ) and the associated wave statistics over non-uniform bathymetry and currents,
on the assumption that the wave field is Gaussian and quasi-homogeneous. In this section
we discuss a recently developed model called the Quasi-Coherent (QC) model of Smit et
al. (2015a,b) and Akrish et al. (2020) that allows for the generation and propagation of
the statistically inhomogeneous wave field.

Central to the QC approach is the Wigner distribution and its evolution equation. The
underlying concept enables to describe correlation functions that combines both phase
space variables, viz. ~x and ~k, and has been widely adopted in, e.g. statistical mechanics,
quantum mechanics and optics (Wigner, 1932; Bremmer, 1973; McDonald, 1988; Cohen,
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2012)3. Below we summarize the main characteristics of the QC model. The implementa-
tion in SWAN will be dealt with in Section 3.9.

2.7.1 The Wigner distribution

The principle result of this section is to present the Wigner distribution which can be
viewed as an extension to the variance density spectrum in the sense that cross-correlation
contributions between non-collinear wave components in the wave field are included. Such
a field thus deviates from homogeneous statistics. We begin with a short review of the
spectral description of quasi-homogeneous wave fields and then consider the extension to
inhomogeneous fields.

We consider the random sea surface η(~x) that is Gaussian distributed with a zero mean.
Its Fourier transform is given by4

η̂(~k) =
1

4π2

∫
η(~x) e−i~k·~xd~x

where ~k = (kx, ky) is the wave number vector. The inverse of this Fourier transform reads

η(~x) =
∫

η̂(~k) ei
~k·~xd~k

Note η and η̂ forms the conjugate pair.

Under the assumption of homogeneity in space, that is, the waves are statistically in-
dependent, the variance density spectrum can be found as the Fourier transform of the
following auto-covariance function

R(~ξ) =
〈
η(~x) η⋆(~x+ ~ξ)

〉

with ~ξ the separation distance and ⋆ denoting the complex conjugate. The variance density
spectrum is given by

E(~k) =
1

4π2

∫
R(~ξ) e−i~k·~ξd~ξ

and, conversely, we obtain

R(~ξ) =
∫
E(~k) ei

~k·~ξd~k

3The time evolution of wave action of a wave packet is naturally described as evolving along a trajectory
(or ray) through the phase space (~x,~k). In this sense, the local wave number vector ~k conjugates to the
position ~x owing to the linear dispersion relation of water waves, assuming a slowly varying medium in
physical space (McDonald, 1988). The variables ~x and ~k are called the canonical coordinates in phase

space with the components of ~x to be the usual Cartesian coordinates (x, y) and the components of ~k to
be the conjugate momenta kx and ky.

4Unless otherwise stated, integrals are with infinite limits.
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The total wave variance is defined through its marginal distribution

〈η η⋆〉 = R(~0) =
∫

E(~k)d~k

Clearly, E(~k) ≥ 0 yields the distribution of variance among different wave numbers. The
first order statistics of the wave field are then completely defined by this spectrum.

However, the situation becomes different if any two distinct wave components are correlated
owing to medium variations (introduced by the depth and mean currents) that are rapid
compared to the typical correlation length of the wave field. For instance, coastal waves can
scatter into multiple directions when interacted with irregular small-scale seabed changes
and can create interference patterns, such as refractive focusing of swells over shoals and
wave diffraction around breakwaters. Additionally, the different wave components may
remain correlated over many wave lengths. Another example is the scattering of waves
induced by submesoscale currents in the open ocean. Statistically, the wave interferences
are described by cross correlations between different components of the scattered wave field.
In turn, this can cause relatively rapid variations in wave statistics (Smit and Janssen, 2013;
Smit et al., 2015a; Akrish et al., 2020).

To properly describe the spectral representation of the correlation between crossing waves
we consider the covariance function Γ of surface elevation η between two spatial points
~x+ ~ξ/2 and ~x− ~ξ/2

Γ(~x, ~ξ) =
〈
η
(
~x+

~ξ

2

)
η⋆
(
~x−

~ξ

2

)〉
(2.136)

Next, we employ the following joint distribution in phase space (~x,~k), called the Wigner
distribution,

W (~x,~k) =
1

4π2

∫
Γ(~x, ~ξ) e−i~k·~ξd~ξ (2.137)

Note that Γ is symmetric with respect to the spatial lag ~ξ, so that Γ(~x, ~ξ) = Γ⋆(~x,−~ξ), and
hence W (~x,~k) is a real-valued function. Furthermore, it can also be expressed in terms of
the spectrum as follows (Bastiaans, 1979)

W (~x,~k) =
∫
Γ̂(~k, ~u) ei~x·~ud~u

with

Γ̂(~k, ~u) =
〈
η̂
(
~k +

~u

2

)
η̂⋆
(
~k − ~u

2

)〉

where ~k = (~k1+~k2)/2 and ~u = ~k1−~k2 are the mean and difference of two interacting wave
components, respectively.

From the above we have the following expressions of the correlation functions

Γ(~x, ~ξ) =
∫
W (~x,~k)ei

~k·~ξd~k
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and

Γ̂(~k, ~u) =
1

4π2

∫
W (~x,~k)e−i~x·~ud~x

Thus, the Wigner distribution W (~x,~k) essentially describes the complete second order
wave statistics, including the cross-variance contributions, by virtue of the separation in
the wave number ~u. Furthermore, the local wave variance can be expressed as

0 ≤ m0(~x) = 〈η η⋆〉 (~x) =
∫
W (~x,~k)d~k

Although its marginal distribution exists5, the Wigner distribution cannot be associated
with a joint distribution in the strict sense because it can take negative values. (The
Wigner distribution is commonly referred to as a quasi-distribution.)

2.7.2 Evolution equation for the Wigner distribution

The aim of this section is the derivation of the evolution equation for the Wigner dis-
tribution. This equation governs the wave field that is considered as a phase-space rep-
resentation, that is, a description of the wave as a function of both position ~x and wave
number ~k. The key to the approach to follow is the back and forth Fourier transformation
between the physical space ~x and the phase space (~x,~k) and the underlying formalism is
Weyl symbol calculus (Weyl, 1931; McDonald, 1988; Cohen, 2012). Basically, we have
ordinary functions living in phase space called symbols and operators or kernels acting
in physical space. The correspondence between symbols and operators was introduced by
Weyl (1931) and appeared to be useful in deriving an equation governing the phase-space
representation of the wave field.

Before proceeding let us recall the following property of the Fourier transforms which will
be used frequently later on. The Fourier transform of a derivative yields the Fourier trans-
form of the function itself multiplied by the Fourier variable. For instance, the Fourier
transform of ∇~ξ is given by

1

4π2

∫
∇~ξf(

~ξ) e−i~k·~ξd~ξ =
i

4π2
~k
∫

f(~ξ) e−i~k·~ξd~ξ = i~k f̂(~k)

where we have employed an integration by parts, and f(~ξ) and f̂(~k) is a compactly sup-
ported smooth function and its Fourier transform, respectively. Here, we say that the
derivative ∇~ξ is associated with i~k, denoted by −i∇~ξ ↔ ~k with ↔ representing the corres-

pondence symbol. Likewise, i∇~k ↔ ~ξ.

The starting point for the derivation of the equation governing the evolution of the Wigner
distribution in phase space is the following dispersive wave equation (e.g., Bremmer, 1973;
Besieris and Tappert, 1976)

∂η

∂t
= −iΩ (~x,−i∇~x) η (2.138)

5Likewise, the marginal
∫
W (~x,~k) d~x yields the distribution 〈η̂ η̂⋆〉 (~k) described in spectral space.
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where η(~x, t) is the complex-valued surface elevation6 and Ω(~x,−i∇~x) is the linear pseudo-

differential wave operator associated with the dispersion relation ω(~x,~k) which is given
by7

ω(~x,~k) =
√
g|~k| tanh(|~k|d) + ~k · ~u (2.139)

with d(~x) the water depth and ~u(~x) the mean current. Eq. (2.138) is valid for linear waves
propagating over slowly varying medium for which the local dispersion relation (2.139) can
be employed.

Since Ω(~x,−i∇~x) is the coordinate space representation of the operator that acts on func-
tions living in physical space, we invoke the Weyl rule to obtain the correspondence with
phase-space functions. This rule thus assigns operators acting on physical space to func-
tions defined on the phase space (Cohen, 2012). First, we define the Fourier transform of

ω(~x,~k) by

ω̂(~q, ~p) =
1

4π2

∫ ∫
ω(~x,~k) e−i~q·~x−i~p·~k d~xd~k

and the inverse
ω(~x,~k) =

∫ ∫
ω̂(~q, ~p) ei~q·~x+i~p·~k d~qd~p (2.140)

Next, the Weyl operator Ω(~x,−i∇~x) associated with ω(~x,~k) is defined by the substitution

of the operator −i∇~x for ~k in Eq. (2.140),

Ω(~x,−i∇~x) =
∫ ∫

ω̂(~q, ~p) ei~q·~x+~p·∇~x d~qd~p

We call the function ω corresponding to the operator Ω the Weyl symbol of Ω; nota-
tion: symb[Ω](~x,~k) = ω(~x,~k). Note further that the exponential function here is to be
understood as its Taylor series expansion, that is,

ei~q·~x+~p·∇~x =
∞∑

n=0

1

n!

[
i~q · ~x+ ~p · ∇~x

]n

In a similar vein, the function Γ lives on the physical space. Hence, in the context of symbol
formalism and considering Eq. (2.137), Γ is interpreted as a coordinate space (kernel)

6Strictly speaking, in the presence of the ambient current, the so-called action variable ψ(~x, t) should
be employed instead of η(~x, t). This variable is characterized by its surface elevation η(~x, t) and surface
potential φ(~x, t). Without reproducing the rather involved definition of ψ (see Akrish et al. (2020), their
Eq. (2.2)), we just keep the notion of η here as it is helpful to comprehend the rest of this section without
further consequences.

7A pseudo-differential operator is the inverse Fourier transform of the multiplication of η̂ by a symbol
(here ω) in Fourier space and can be considered as a generalized differential operator. This is evidenced
by the fact that the Fourier transform of a pseudo-differential operator acting on a function living in
physical space can be expressed as the Fourier multiplier operator in Fourier space, that is, given the
pseudo-differential operator Ω(−i∇~x) (or a special case, the derivative −i∇~x) with symbol ω(~k) (or ~k in

the special case) we have Ω̂ f(~x) = ω(~k) f̂(~k) for any smooth compactly supported function f(~x) and its

Fourier transform f̂(~k). The use of pseudo-differential operators is of great importance in describing the
dynamics of water waves and wave functions in quantum mechanics.
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operator and its Weyl symbol is the Wigner distribution (McDonald, 1988).

In the following step, we consider the correlation function Γ(~x, ~ξ) and derive its evolution
equation as follows. First, referring to Eq. (2.136), we have8

∂Γ

∂t
=
〈
∂η(~x1)

∂t
η⋆(~x2)

〉
+
〈
η(~x1)

∂η⋆(~x2)

∂t

〉

with ~x1 = ~x + ~ξ/2 and ~x2 = ~x − ~ξ/2. Next, we substitute Eq. (2.138) into the above
equation, resulting in

∂Γ

∂t
= −i

〈
Ω (~x1,−i∇~x1

) η(~x1) η
⋆(~x2)

〉
+ i
〈
η(~x1) Ω (~x2, i∇~x2

) η⋆(~x2)
〉

By applying the transformation (~x1, ~x2) → (~x, ~ξ) (using the inverse of the Jacobian gives
∇~x1

= ∇~x/2 +∇~ξ and ∇~x2
= ∇~x/2−∇~ξ), one obtains

∂Γ

∂t
(~x, ~ξ) = −i

[
Ω
(
~x+ ~ξ/2,−i∇~x/2− i∇~ξ

)
− Ω

(
~x− ~ξ/2, i∇~x/2− i∇~ξ

)]
Γ(~x, ~ξ)

Since symb[Γ](~x,~k) = W (~x,~k), the phase-space equation for the Wigner distribution can
be found using the Fourier transformation, and is given by

∂W

∂t
(~x,~k) = −i

[
ω
(
~x+ i∇~k/2,

~k − i∇~x/2
)
− ω

(
~x− i∇~k/2,

~k + i∇~x/2
)]

W (~x,~k)

or written in shorthand as

∂W

∂t
(~x,~k) = −iω

(
~x+ i∇~k/2,

~k − i∇~x/2
)
W (~x,~k) + c.c. (2.141)

where c.c. stands for complex conjugate.

It should be noted that we could have derived an evolution equation for the correlation
function in the Fourier space instead of physical space, that is, Γ̂(~k, ~u), and subsequently
an equation governing the Wigner distribution, W = symb[Γ̂], which is then exactly
Eq. (2.141); see Smit and Janssen (2013).

Eq. (2.141) contains the product of two symbols ω and W in phase space. The purpose of

what follows is to find an explicit expression for symbol ω(~x+ i∇~k/2,
~k− i∇~x/2). Its Weyl

operator is given by

Ω(~x+ ~ξ/2,−i∇~ξ − i∇~x/2) =
∫ ∫

ω̂(~q, ~p) ei~q·(~x+
~ξ/2)+~p·(∇~ξ

+∇~x/2) d~qd~p

To proceed we recall that ~x and ∇~x do not commute (and likewise ∇~ξ and ~ξ) and their

commutation relation can be expressed as [i~q ·~x, ~p ·∇~x/2] = −1
2
i~q · ~p (and [~p ·∇~ξ, i~q · ~ξ/2] =

8We suppress the variable t in the argument of η and other functions for the convenience of presentation.
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1
2
i~p · ~q). With the aid of the Baker-Campbell-Hausdorff (BCH) identity9 we can simplify

the Weyl operator as follows

Ω(~x+ ~ξ/2,−i∇~ξ − i∇~x/2) =
∫ ∫

ω̂(~q, ~p) ei~q·~x e~p·∇~x/2 ei~q·~p/4 e~p·∇~ξ ei~q·
~ξ/2 e−i~p·~q/4 d~qd~p

=
∫ ∫

ω̂(~q, ~p) ei~q·~x e~p·∇~ξ e~p·∇~x/2 ei~q·
~ξ/2 d~qd~p

Now, the corresponding Weyl symbol is written as

ω(~x+ i∇~k/2,
~k − i∇~x/2) =

∫ ∫
ω̂(~q, ~p) ei~q·~x ei~p·

~k e~p·∇~x/2 e−~q·∇~k
/2 d~qd~p

=
∫ ∫

ω̂(~q, ~p) ei~q·~x+i~p·~k

︸ ︷︷ ︸
(I)

e~p·∇~x/2 e−~q·∇~k
/2

︸ ︷︷ ︸
(II)

d~qd~p

The first part (I) is simply the Fourier transform of ω̂(~q, ~p), that is, Eq. (2.140), resulting in

ω(~x,~k). With respect to part (II) we recall that the exponential function can be expressed
as its Taylor series, such as

e~p·∇~x/2 =
∞∑

n=0

1

n!

[
1

2
~p · ∇~x

]n

Then keeping in mind that multiplication by ~q or ~p will lead to a derivative in the corres-
ponding Fourier variable ~x or ~k, respectively, we obtain the following

ω(~x+ i∇~k/2,
~k − i∇~x/2) = ω(~x,~k) exp

(
1

2i

(←−∇~k · ∇~x −←−∇~x · ∇~k

))

with the left-pointing arrow above the derivative indicating that it acts on the symbol
standing to the left (here ω). Inserting in Eq. (2.141) yields

∂W

∂t
(~x,~k) = −iω(~x,~k) exp

(
i

2

←−∇~x · −→∇~k −
i

2

←−∇~k ·
−→∇~x

)
W (~x,~k) + c.c. (2.142)

where the right-pointing arrow implies that the derivative operates on the symbol to the
right (here W ). The first term of the right hand side of Eq. (2.142) represents the product
of the two symbols and is known as the Moyal product (Cohen, 2012). Clearly, this product
is not commutative because the product of the associated operators in physical space is a
non-commutative operator. However, by virtue of the Weyl rule of association, the proper
ordering of the arguments ~x and −i∇~x of operator Ω is obtained such that Eq. (2.138)

recasts to the correct transport equation for W (~x,~k), assuming the usual WKB ansatz
(further details and discussion on this topic can be found in Smit and Janssen, 2013 and
in Akrish et al., 2020).

9If operators A and B do not commute, that is, [A,B] ≡ AB −BA 6= 0, but they commute with their
commutator, [A, [A,B]] = [B, [A,B]] = 0, then the BCH formula is given by eA+B = eA eB e−[A,B]/2. This
is a commonly used formula in quantum mechanics.
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Eq. (2.142) is the most general form of the phase-space equation, suitable for the spectral
description of the statistically inhomogeneous wave field. However, this equation is given
in the form of an infinite series (through the expansion of the exponential function), which
is not readily numerically tractable even for direct evaluation. Thus, an approximation is
introduced by truncating the series expansion, which is the objective of the next section.

2.7.3 The QC approximation

To establish a criterion with which the truncation of the exponential series function in
(2.142) is carried out, we define the following length scales. Let L, Lm and Ls denote
the characteristic wave length, the characteristic length scale of medium variation and the
characteristic length scale over which second order wave statistics vary in physical space,
respectively. Since our starting point in the present analysis is Eq. (2.138), thus assuming
the medium changing slowly, it is required that the ratio ǫ = L/Lm is small. Hence, the
physical validity of Eq. (2.142) remains unaffected by assuming ǫ ≪ 1. In addition, the
statistics of the wave field (including cross correlations) is assumed to vary weakly on dis-
tances of the order of O(100− 1000) wave lengths10, that is, the ratio µ = L/Ls ≪ 1.

Next, we introduce the correlation (or coherent) length scale of the wave field Lc. It meas-

ures the correlation between two wave components separated by the distance ~ξ. Generally,
the correlation function Γ(~x, ~ξ) tends to zero as |~ξ| → Lc (Smit et al., 2015a). In partic-
ular, for narrow-band waves, the wave field remains correlated over many wave lengths,
whereas the coherent radius of directionally spread sea states is relatively small. So, Lc is
directly related to the characteristic width of the spectrum ∆k as Lc = 2π/∆k (Smit and
Janssen, 2013; Smit et al., 2015a). We note that the spectrum width ∆k may be measured
by the standard deviation of the incident wave field, which is usually statistically quasi-
homogeneous.

Finally, to relate the correlation length scale to the medium variation length scale, we
consider the ratio β = Lc/Lm. This is the key for establishing a suitable approximation to
Eq. (2.142). We address two cases of interest, namely, (i) β ≪ 1, in which the wave field
de-correlates over distances short compared to the medium variations; and (ii) β = O(1)
where seabed or current varies rapidly within the coherent radius of the wave field.

The step in getting explicit approximations is to truncate appropriately the expansion of
the exponential function in Eq. (2.142). To this end, consider a wave field at point ~x0 and

described by the carrier wave number ~k0. As parameter β indicates the relative importance
of the medium variation (related to ∇~x0

ω) with respect to the coherent radius of the wave
field (related to ∇~k0

W ), the first term in the exponential function is scaled by

β∇~x ω · ∇~kW |~x=~x0,~k=~k0

10As a matter of fact, the cross correlations are due to the interaction with a medium that varies slowly
in space.
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Similarly, parameter µ expresses the significance of the spatial variation of the spectrum
with respect to the wave length scale (related to ∇~x0

W ), so that the second term of the
exponential scaled as

µ∇~k ω · ∇~xW |~x=~x0,~k=~k0

(Note that the group velocity ∇~k ω = O(1).)

Now, under the conditions that µ≪ 1 and also that the wave field de-correlates on shorter
scales than the scale of the medium variations, that is, β ≪ 1, the Taylor series expansion
around the phase space point (~x0, ~k0) can be expressed as

exp
(
i

2

←−∇~x · −→∇~k −
i

2

←−∇~k ·
−→∇~x

)
= 1 +

i

2

←−∇~x · −→∇~k −
i

2

←−∇~k ·
−→∇~x +O

(
β2, µ2

)

On substitution into Eq (2.142) and neglecting higher order terms we obtain the familiar
form for the action balance equation

∂W

∂t
+∇~k ω · ∇~xW −∇~x ω · ∇~k W = 0

which is thus the lowest order approximation of Eq. (2.142).

At this point, the above analysis is only limited to cases in which β ≪ 1 as the truncated
expansion in β is no longer valid for β = O(1). A different path is presented here, paved
by Smit and Janssen (2013), to extend the range of applicability of the approximate model
to values of β = O(1).

We recall the Weyl symbol ω that reads

ω(~x+ i∇~k/2,
~k − i∇~x/2) =

∫ ∫
ω̂(~q, ~p) ei~q·~x+i~p·~k exp

(
− i

2

←−∇~k ·
−→∇~x

)
exp

(
−1

2
~q · −→∇~k

)
d~qd~p

=
∫
ω̂(~q,~k) ei~q·~x exp

(
− i

2

←−∇~k ·
−→∇~x

)
exp

(
−1

2
~q · −→∇~k

)
d~q

with

ω̂(~q,~k) =
∫
ω̂(~q, ~p) ei~p·

~k d~p

Consequently, the Moyal product yields

ω(~x+i∇~k/2,
~k−i∇~x/2)W (~x,~k) =

∫
ω̂(~q,~k) ei~q·~x exp

(
− i

2

←−∇~k ·
−→∇~x

)
exp

(
−1

2
~q · −→∇~k

)
W (~x,~k) d~q

Observing that the assumption µ≪ 1 still holds and that the term exp(−1
2
~q · −→∇~k)W (~x,~k)

equals the Taylor series of W (~x,~k − ~q/2), the phase-space equation is given by

∂W

∂t
(~x,~k) = −i

∫
ω̂(~q,~k) ei~q·~x

(
1− i

2

←−∇~k ·
−→∇~x

)
W (~x,~k − ~q

2
) d~q + c.c. (2.143)



58 Chapter 2

Note that the integral expression is treated as a convolution between ω̂ and W (including
their derivatives). Eq. (2.143) is the central result of the paper of Smit and Janssen (2013)
(see their Eq. (15). But see also Akrish et al. (2020), their Eq. (2.19), where the mean
currents have been included.) By virtue of the assumption µ ≪ 1, they refer to this
approximation as the (first order) quasi-coherent (QC) approximation.

The purpose of the rest of the work presented here is to make the QC approximation
numerically more amenable by recasting Eq. (2.143) in the following form

∂W

∂t
+∇~k ω · ∇~xW = Sqc (2.144)

where Sqc is a scattering source term that accounts for the generation and propagation
of inhomogeneous wave field induced by medium variations, including wave refraction,
Doppler shifting11 and wave interference.

We revisit the convolution integral in Eq. (2.143) in order to find a form for Sqc that can be

efficiently computed; it is denoted by G(~x,~k). We consider a point ~x′ in the neighborhood

of the origin. Then let ω̂(~q,~k) be the Fourier transform of ω(~x′, ~k), as follows

ω̂(~q,~k) =
1

4π2

∫
ω(~x′, ~k) e−i~q·~x′

d~x′

Furthermore, we have (cf. Eq. (2.137))

W (~x,~k − ~q

2
) =

1

4π2

∫
Γ(~x, ~ξ) e−i(~k−~q/2)·~ξd~ξ

Substituting both of these Fourier transforms in the integral yields

G =
∫

ω̂(~q,~k) ei~q·~x
(
1− i

2

←−∇~k ·
−→∇~x

)
W (~x,~k − ~q

2
) d~q =

1

16π4

∫ ∫ ∫
ω(~x′, ~k)

(
1− i

2

←−∇~k ·
−→∇~x

)
Γ(~x, ~ξ) ei~q·(~x−~x′+~ξ/2) e−i~k·~ξ d~ξ d~x′ d~q

Since the inverse Fourier transform of the (complex) exponential is a shifted Dirac delta,
the triple integral is then rewritten as

G =
1

16π4

∫ ∫
ω(~x′, ~k)

(
1− i

2

←−∇~k ·
−→∇~x

)
Γ(~x, ~ξ) e−i~k·~ξ δ

(
~x− ~x′ +

~ξ

2

)
d~ξ d~x′

=
1

4π2

∫
ω(~x+

~ξ

2
, ~k)

(
1− i

2

←−∇~k ·
−→∇~x

)
Γ(~x, ~ξ) e−i~k·~ξ d~ξ

11Wave refraction and Doppler shifting can be modelled explicitly through the term −∇~x ω ·∇~kW added
to the left hand side of Eq. (2.144), as proposed in Smit et al. (2015a) using the local plane approximation,
see pg. 1142 of their paper. However, for a number of reasons that will become clear in Section 3.9, we
will not do so here.
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The last line essentially implies that function ω(~x′, ~k) must have a compact support in

|~x′| ≤ |~ξ|/2. Since, by nature, the correlation function is compactly supported, that is,

Γ(~ξ) = 0 for |~ξ| > Lc (note Lc ∼ ∆k−1 is finite), it is concluded that the local wave
statistics can only be affected by the medium within a radius Lc/2 around point ~x.

Following Akrish et al. (2020), the dispersion relation at the point ~x+ ~ξ/2 is expressed as

a superposition of the local value at ~x and a remainder, ω(~x+ ~ξ/2, ~k) = ω(~x,~k) +∆ω(~x+
~ξ/2, ~k). Then substitution gives

G =
1

4π2

∫
ω(~x,~k)

(
1− i

2

←−∇~k ·
−→∇~x

)
Γ(~x, ~ξ) e−i~k·~ξ d~ξ +

1

4π2

∫
∆ω(~x+

~ξ

2
, ~k)

(
1− i

2

←−∇~k ·
−→∇~x

)
Γ(~x, ~ξ) e−i~k·~ξ d~ξ

= ω(~x,~k)
(
1− i

2

←−∇~k ·
−→∇~x

)
W (~x,~k) +

1

4π2

∫
∆ω(~x+

~ξ

2
, ~k)

(
1− i

2

←−∇~k ·
−→∇~x

)
Γ(~x, ~ξ) e−i~k·~ξ d~ξ

We recall Eq. (2.143) and substitute the final expression with the result

∂W

∂t
+∇~k ω · ∇~xW =

−i
4π2

∫
∆ω(~x+

~ξ

2
, ~k)

(
1− i

2

←−∇~k ·
−→∇~x

)
Γ(~x, ~ξ) e−i~k·~ξ d~ξ + c.c.

Finally, the source term in its suitable form is obtained by transforming back

Sqc =
−i
4π2

∫
∆ω(~x+

~ξ

2
, ~k)

(
1− i

2

←−∇~k ·
−→∇~x

)
Γ(~x, ~ξ) e−i~k·~ξ d~ξ + c.c.

= −i
∫

∆ω̂(~q,~k) ei~q·~x
(
1− i

2

←−∇~k ·
−→∇~x

)
W (~x,~k − ~q

2
) d~q + c.c.

with ∆ω̂(~q,~k) the Fourier transform of ∆ω(~x′, ~k). By shifting the origin to the point ~x,

the Fourier transform of ∆ω(~x+ ~x′, ~k) is then given by

ei~q·~x∆ω̂(~q,~k)

This Fourier transform is denoted by ∆ω̂(~x, ~q,~k) and is computed over a square domain
with a fixed size Lc/2 around the point ~x. It should be noted that the source term Sqc is

evaluated by means of integration over ~q and not over ~ξ.

In summary, the evolution equation for the Wigner distribution is given by Eq. (2.144),
whereas the QC scattering term that describes the evolution of the coherent structures in
the wave field reads

Sqc = −i
∫

∆ω̂(~x, ~q,~k)
(
1− i

2

←−∇~k ·
−→∇~x

)
W (~x,~k − ~q

2
) d~q +

+i
∫

∆ω̂(~x, ~q,~k)
(
1 +

i

2

←−∇~k ·
−→∇~x

)
W (~x,~k +

~q

2
) d~q (2.145)
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Chapter 3

Numerical approaches

3.1 Introduction

To design a spectral wave model many choices and assumptions need to be made. With the
development of the SWAN model, initiated by Leo Holthuijsen, Nico Booij and Roeland
Ris in 1993 and published in Booij et al. (1999), a number of principles and the scope have
been established. These are as follows.

• SWAN must be suitable for both nearshore and oceanic applications. This model
properly accounts for deep and shallow water wave processes (e.g. wind input, white
capping, quadruplets, surf breaking and triads, as discussed in Section 2.3), and em-
ploys flexible meshes (curvilinear and triangular grids) to accommodate both small-
and large-scale simulations. Typically, grid sizes can vary between 20 m (to resolve
small-scale features in the seabed topography) and 100 km (to resolve large-scale
features in the (hurricane) wind field). The action balance equation is formulated in
Cartesian coordinates, and optionally in spherical coordinates.

• The discretization of the action balance equation must be simple, robust, accurate
and economical for applications in coastal waters. Therefore a finite difference ap-
proach is employed based on the so-called method of lines. This means that the
choice for time integration is independent of the choice for spatial discretization. In
addition, time integration is fully implicit, which implies that the employed finite
difference schemes are stable (in the Von Neumann sense) for an arbitrarily large
time step irrespective of grid size. These schemes need only to be accurate enough
for a time step and a grid size solely determined by physical accuracy for the scale
of the phenomena to be simulated.

• The finite difference schemes for propagation of wave action in both geographic and
spectral spaces must comply the causality principle, which is an essential property of
the hyperbolic equation. Preservation of causality ensures that wave energy propag-
ates in the right direction and at the right speed. Causality requires that wave energy
being propagated from one point to another point further downstream must pass
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through all the grid points on its path between them. As a consequence, propagation
schemes must look for wave energy by following wave characteristics in an upwind
fashion at the right speed, while satisfying a CFL criterion. In addition, a sweeping
algorithm in compliance with the causality rule has been adopted.

• Moreover, the finite difference schemes must also obey the law of constant energy
flux along the wave ray, which is necessary for correct wave shoaling, especially in
case of rapidly varying bathymetry (e.g. seamounts, shelf breaks, main channels in
estuaries, and floodplain areas in rivers).

• Finally, some measures have been employed to guarantee numerical stability at large
time steps. These are the action density limiter, the frequency-dependent under-
relaxation in the iterative procedure, the conservative elimination of negative energy
densities (not for the QC approximation!), the refraction limiter and the Patankar
rules for linearization of the nonlinear source terms.

The numerical approaches outlining the abovementioned concepts, assumptions and prin-
ciples will be discussed in the following sections.

3.2 Discretization

Discretization of Eq. (2.18) is carried out using the finite difference method. The homo-
geneous part of Eq. (2.18) is given by

∂N

∂t
+

∂cxN

∂x
+

∂cyN

∂y
+

∂cσN

∂σ
+

∂cθN

∂θ
. (3.1)

We choose a rectangular grid with constant mesh sizes ∆x and ∆y in x− and y−direction,
respectively. The spectral space is divided into elementary bins with a constant directional
resolution ∆θ and a constant relative frequency resolution ∆σ/σ (resulting in a logarithmic
frequency distribution). We denote the grid counters as 1 ≤ i ≤ Mx, 1 ≤ j ≤ My,
1 ≤ l ≤ Mσ and 1 ≤ m ≤ Mθ in x−, y−, σ− and θ−spaces, respectively. All variables,
including e.g. wave number, group velocity, ambient current and propagation velocities,
are located at points (i, j, l,m). Time discretization takes place with the implicit Euler
technique. We obtain the following approximation of Eq. (3.1):

Nn −Nn−1

∆t
|i,j,l,m +

[cxN ]i+1/2 − [cxN ]i−1/2

∆x
|nj,l,m +

[cyN ]j+1/2 − [cyN ]j−1/2

∆y
|ni,l,m +

[cσN ]l+1/2 − [cσN ]l−1/2

∆σ
|ni,j,m +

[cθN ]m+1/2 − [cθN ]m−1/2

∆θ
|ni,j,l , (3.2)
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where n is a time-level with ∆t a time step. In case of a stationary computation, the
first term of Eq. (3.2) is removed and n denotes an iteration level. Note that locations in
between consecutive counters are reflected with the half-indices.

3.2.1 Discretization in geographical space

Since the unknown N and the propagation velocities are only given in points (i, j, l,m),
further approximation is needed. A first order upwind scheme in geographical space may
be employed, since it is fully monotone, i.e. it can not to give rise to spurious oscillations.
A disadvantage of this scheme is that it is numerically diffusive, which naturally degrades
the accuracy of the model. This numerical diffusion is caused by gradients of wave action
across geographic space, e.g. due to refraction by bathymetry or currents, which is often
small in coastal areas. So the wave energy field can be considered as smooth. However, in
the current SWAN version, two alternatives to this scheme are implemented, namely the
second order SORDUP and Stelling/Leendertse schemes. These schemes produce far less
numerical diffusion and are appropriate for ocean and shelf sea (regional) applications.

First order upwind scheme; BSBT

The fluxes cxN at (i+ 1/2, j, l,m) and cyN at (i, j + 1/2, l,m) are approximated with an
upwind scheme as follows

cxN |i+1/2,j,l,m =

{
cxN |i,j,l,m , cx|i,j,l,m > 0
cxN |i+1,j,l,m , cx|i,j,l,m < 0

(3.3)

and

cyN |i,j+1/2,l,m =

{
cyN |i,j,l,m , cy|i,j,l,m > 0
cyN |i,j+1,l,m , cy|i,j,l,m < 0

. (3.4)

The fluxes at (i − 1/2, j, l,m) and (i, j − 1/2, l,m) are obtained from (3.3) and (3.4),
respectively, by decreasing the indices by 1 in appropriate manner. According to the
solution algorithm, to be explained later in Section 3.3, both fluxes at (i + 1/2, j, l,m)
and (i − 1/2, j, l,m) acts together with the same sign of cx (either positive or negative).
Note that the flux cxN is considered as a whole quantity, and the propgation velocity cx
is taken in its points of definition1. The same holds for the fluxes at (i, j + 1/2, l,m) and
(i, j − 1/2, l,m) operating together with the same sign of cy. These updates take place by
ordering the grid points such that points solved later have no influence on the previous
grid points. This ordering and the associated updates are carried out, for instance, during
the first sweep if cx > 0 and cy > 0, and the resulting schemes read

(
(cxN)i − (cxN)i−1

∆x

)n

j,l,m

(3.5)

1In the present context, we consider the discretization of the divergence operator applied to the energy
flux. See Zijlema (2021) for details.
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and (
(cyN)j − (cyN)j−1

∆y

)n

i,l,m

(3.6)

In this way the solution at a grid point is determined solely by its upstream points, and
causality is preserved. In addition, the above schemes represent the divergence of energy
flux, ∇~x · (~cgN), at the discrete level. If there is no net flux change in the corresponding
grid point, the divergence must be zero, which is obviously the case. For further details on
this solution update, see Section 3.3.

The combination of the time and geographic space discretizations in Eqs. (3.2), (3.3) and
(3.4) is known as a first order, backward space, backward time (BSBT) scheme. This
scheme can be applied both in stationary and nonstationary simulations. This dimen-
sionally split scheme is unconditionally stable, monotone and compact, but not optimal
in terms of numerical cross-diffusion. (An example of a genuine multidimensional BSBT
scheme with a reduced amount of cross-diffusion is considered for unstructured grids as
discussed in Section 8.3.) The BSBT scheme can also be derived from the method of char-
acteristics and therefore, it can be considered as a semi-Lagrangian scheme. This scheme
is therefore consistent with local wave characteristics. This view is the basic philosophy
of the numerical approach used in SWAN and is related to the fact that the energy flux
must remain constant along a wave characteristic (see, e.g., Whitham (1974), pg. 245 and
Eq. (11.61), and Holthuijsen (2007), pg. 200). This makes sure that the scheme is flux
conservative which is necessary for wave shoaling over rapidly varying sea beds.

SORDUP

For the SORDUP scheme, which is the default scheme for stationary computations, the
second and third terms of Eq. (3.2) representing x− and y−derivatives, respectively, are
replaced by (

3(cxN)i − 4(cxN)i−1 + (cxN)i−2

2∆x

)n

j,l,m

(3.7)

and (
3(cyN)j − 4(cyN)j−1 + (cyN)j−2

2∆y

)n

i,l,m

(3.8)

in case of the first sweep, i.e. cx > 0 and cy > 0 (cf. Section 3.3). See also Rogers et
al. (2002). This scheme, also known as a BDF scheme (Gear, 1971), is second accurate in
space, but first order in time (not relevant), and is flux conservative (empirical evidence),
but not monotone. In addition, this scheme preserves causality and produces less amount
of numerical diffusion and is not significantly more expensive than the BSBT scheme.

In the neighboorhood of open boundaries, land boundaries and obstacles (i.e., the last
two grids adjoining such grid points for the SORDUP scheme), SWAN will revert to the
first order upwind BSBT scheme. This scheme has a larger numerical diffusion but that is
usually acceptable over the small distances involved.



Numerical approaches 65

Stelling and Leendertse scheme

For the so-called cyclic scheme of Stelling and Leendertse (1992), which is the default
scheme for nonstationary computations, the second and third terms of Eq. (3.2) repres-
enting x− and y−derivatives, respectively, are replaced by
(
10(cxN)i − 15(cxN)i−1 + 6(cxN)i−2 − (cxN)i−3

12∆x

)n

j,l,m

+

(
(cxN)i+1 − (cxN)i−1

4∆x

)n−1

j,l,m

(3.9)
and
(
10(cyN)j − 15(cyN)j−1 + 6(cyN)j−2 − (cyN)j−3

12∆y

)n

i,l,m

+

(
(cyN)j+1 − (cyN)j−1

4∆y

)n−1

i,l,m

(3.10)
in case of the first sweep, i.e. cx > 0 and cy > 0 (cf. Section 3.3). See also Rogers et
al. (2002). This scheme is second accurate in time and space, unconditionally stable,
preserves causality, and is flux conservative (empirical evidence). Moreover, the amount
of numerical diffusion generated by this scheme is significantly much smaller than both
BSBT and SORDUP schemes.

In the neighboorhood of open boundaries, land boundaries and obstacles (i.e., the last
three grids adjoining such grid points for the Stelling and Leendertse scheme), SWAN will
revert to the first order upwind BSBT scheme.

Although the Stelling and Leendertse scheme is unconditionally stable, i.e. there is no
restriction on the chosen time step, there is, however, a practical limitation to this time
step because of the spurious oscillations produced by this scheme. These so-called wiggles
can appear much more strongly in the numerical solution if the associated Courant number
is much larger than 1. Contrary to the BSBT scheme, this low-diffusion scheme is not able
to suppress the wiggles sufficiently. The largest acceptable Courant number is 10 (based
on the fastest wave) which is, however, a subjective criterion (Rogers et al., 2002).

Usually, the numerical diffusion of the Stelling and Leendertse scheme is so small that
the so-called garden-sprinkler effect (GSE) may show up if propagation over very large
distances is considered. This effect is due to the (coarse) spectral resolution (see Booij and
Holthuijsen, 1987). It can be counteracted by anisotropic diffusion terms that have been
explicitly added to the numerical scheme. Their values depend on the spectral resolution
and the propagation time of the waves.

The diffusion applied in the propagation direction (locally along the wave ray) is

Dss =
∆c2gT

12

where ∆cg is the difference in the group velocities of successive frequencies, and T is the
so-called wave age, i.e. the time elapsed since the propagated swell was generated by the
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storm. The diffusion normal to the propagation direction (locally along the wave crest) is

Dnn =
c2g∆θ2T

12

From these, diffusion coefficients in Cartesian coordinates are calculated as

Dxx = Dss cos
2 θ +Dnn sin

2 θ ,

Dyy = Dss sin
2 θ +Dnn cos

2 θ ,

Dxy = (Dss −Dnn) cos θ sin θ

The diffusion terms to be added to Eq. (3.1) are given by

−Dxx
∂2N

∂x2
− 2Dxy

∂2N

∂x∂y
−Dyy

∂2N

∂y2

Each of these second derivative terms is approximated in space using second order central
differences, at time level n− 1, as follows

Dxx

(
Ni+1 − 2Ni +Ni−1

∆x2

)n−1

j,l,m

Dyy

(
Nj+1 − 2Nj +Nj−1

∆y2

)n−1

i,l,m

Dxy

(
Ni,j −Ni−1,j −Ni,j−1 +Ni−1,j−1

∆x∆y

)n−1

l,m

This explicit scheme is fast (having little impact on computation time) but only condi-
tionally stable. Through mathematical analysis (not shown) it can be shown that a likely
stability condition is (Rogers et al., 2002)

Q =
max(Dxx, Dyy, Dxy)∆t

min(∆x,∆y)2
≤ 1

2
(3.11)

Thus, it is credible that Eq. (3.11) holds true for the two-dimensional Stelling and
Leendertse scheme with this GSE correction. In short, by adding the GSE correction,
the unconditionally stable advection scheme of SWAN becomes a conditionally stable
advection-diffusion scheme. This restriction appears not to be severe as is commonly
believed for a typical advection-diffusion equation. In experiments, it was found that with
Q ≤ 0.48, no instability was observed (Rogers et al., 2002). It is readily shown that for
typical ocean applications Dnn dominates the diffusion and Q can be written as

Q =
cg

2T∆t∆θ2

12∆x2
(3.12)
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The variable wave age T could be computed during the computations of SWAN but it
requires the same order of magnitude of computer memory as integrating the action balance
equation. Instead a constant wave age T can be used as an approximation, so that Eq.
(3.12) becomes

Q =
Lµ∆θ2

12∆x
(3.13)

where the characteristic travel distance of the waves is L = cgT (e.g., the dimension of
the ocean basin) and µ = cg∆t/∆x is the Courant number. For oceanic applications, the
Courant number is typically µ ≈ 1

2
so that Q ≤ 1

4
for typical values of ∆θ ∼ 10o and

L/∆x ∼ 200 (the number of grid points in one direction of the grid). This implies that the
Stelling and Leendertse scheme with the GSE correction is stable for typical ocean cases.
For shelf sea (regional) applications, the value of µ = O(1) but the garden-sprinkler effect
tends to be small on these scales and the diffusion can and should not be used to avoid the
stability problem. For small-scale (local) applications, typically µ = O(10−100). But such
cases are usually treated as stationary and the SORDUP scheme (no GSE correction is
included in this scheme), or preferably the BSBT scheme, should be used. See also Rogers
et al. (2002) for further details.

3.2.2 Note on the choice of geographic propagation schemes

The main interest of the SWAN users is in simulating wind-generated waves and combined
swell-sea cases in coastal ocean waters, and it is particularly with the view to such computa-
tions that a simple and compact, but first order BSBT scheme was implemented in SWAN.
A substantial body of experience gathered over the past 20 years on the performance of
both lower and higher upwind schemes in SWAN suggests that in many circumstances, the
discretization of the propagation terms in geographical space is not a crucial issue. Many
nearshore simulations have shown the solution for action density to be on the whole rather
insensitive to the accuracy with which geographic propagation terms are approximated.
This reflects the tendency for the level of wave action to be dictated by source terms, while
the local changes of the energy field across geographical space is relatively weak. This
is consonant with the established view that a certain amount of numerical diffusion can
be safely tolerated in the numerical scheme for geographic propagation, as its impact on
wave parameters is negligible (Rogers et al., 2002; WISE Group, 2007). Also, broad wave
spectra will tend make numerical diffusion far less noticeable in a wave field.

This would appear to suggest, however, that the use of higher order upwind schemes serves
no useful purpose. This is probably not so since there might be some cases that are prone
to diffusion, where the benefit of such schemes is obvious. One can think of a case of swell
propagation over very long distances. While low-diffusive, higher order schemes did permit
long-distance swell cases to be validated, the reduced diffusion was found to pose a serious
difficulty as the garden sprinkler effect becomes more visible, see e.g. WISE Group (2007).
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3.2.3 Discretization in spectral space

The fluxes in the spectral space (σ, θ), as given in Eq. (3.2), should not be approximated
with the first order upwind scheme since, it turns out to be very diffusive for frequen-
cies near the blocking frequency2. Central differences should be used because of second
order accuracy. However, such schemes tend to produce unphysical oscillations due to
relatively large gradients in action density near the blocking frequency. Instead, a hybrid
central/upwind scheme is employed:

cσN |i,j,l+1/2,m =





(1− 0.5µ)cσN |i,j,l,m + 0.5µcσN |i,j,l+1,m , if shifting to higher frequencies

(1− 0.5µ)cσN |i,j,l+1,m + 0.5µcσN |i,j,l,m , if shifting to lower frequencies

(3.14)
and

cθN |i,j,l,m+1/2 =





(1− 0.5ν)cθN |i,j,l,m + 0.5νcθN |i,j,l,m+1 , if counter-clockwise

(1− 0.5ν)cθN |i,j,l,m+1 + 0.5νcθN |i,j,l,m , if clockwise

, (3.15)

where the parameters µ and ν are still to be chosen. For all values µ ∈ [0, 1] and ν ∈
[0, 1], a blended form arises between first order upwind differencing (µ = ν = 0) and
central differencing (µ = ν = 1). Like the fluxes in the geographical space, both fluxes at
(i, j, l+1/2,m) and (i, j, l−1/2,m) acts together with the same sign of cσ. The same holds
for fluxes at (i, j, l,m+ 1/2) and (i, j, l,m− 1/2) acting together with the same sign of cθ.
Note that the above scheme is flux conservative and thus suitable for cases with rapidly
varying bathymetry.

Let us consider a few examples for the purpose of the last term of Eq. (3.1), i.e. the
refraction term. We substitute approximation (3.15) in the last term of Eq. (3.2), and
central differences (ν = 1) yields (keep in mind that bin m is the bin of consideration for
the approximation of this refraction term)

(
(cθN)m+1 − (cθN)m−1

2∆θ

)n

i,j,l

whereas for the counter-clockwise case cθ|m > 0 and cθ|m−1 > 0, first order upwinding
(ν = 0) returns (

(cθN)m − (cθN)m−1

∆θ

)n

i,j,l

and for the clockwise case cθ|m+1 < 0 and cθ|m < 0, we have

(
(cθN)m+1 − (cθN)m

∆θ

)n

i,j,l

2Waves can be blocked by the current at a relative high frequency.
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It is important to note that we consider the flux cθN as one single quantity defined in
directional bins only. Suppose that the divergence of this flux is zero. Applying the above
upwind approximations implies that the wave action flux is constant in every directional
bin. Hence, this upwind scheme (ν = 0) preserves exactly the constancy of this flux. This
is called pointwise conservation. Note that this scheme also preserves causality. Although
the central difference scheme (ν = 1) is flux conservative, it is not pointwise conservative.
Furthermore, due to the nature of this approximation a checkerboard problem may arise.
Therefore, in practice, we always choose 0 ≤ ν < 1 in SWAN.

The usual choice in SWAN is ν = 1
2
. This approximation contains three consecutive

transport velocities which can either be positive or negative. In other cases, they are
negligibly small (zero crossing), for which central differences (ν = 0) will then be applied
(no clear wave direction). We first consider the counter-clockwise case cθ|m+1 > 0, cθ|m > 0
and cθ|m−1 > 0, and the associated approximation then reads

(
(cθN)m+1 + 2(cθN)m − 3(cθN)m−1

4∆θ

)n

i,j,l

This choice has a smaller amount of numerical diffusion than the upwind scheme, but may
create wiggles, albeit small. This asymmetric approximation, containing three distinctive
fluxes, indicates that the waves are turning counter-clockwise where both bins m and m+1
are receiving energy from the bin m − 1. However, bin m + 1 receives less energy than
bin m. Hence, it slows down the turning of the waves. Since the downstream bin m + 1
receives some energy, this scheme violates causality. Furthermore, although this scheme
is flux conservative, it is not pointwise conservative, i.e. the energy flux may not remain
constant in each directional bin. The other case is the clockwise one, i.e. cθ|m+1 < 0,
cθ|m < 0 and cθ|m−1 < 0. For this case, the approximation is given by

(
3(cθN)m+1 − 2(cθN)m − (cθN)m−1

4∆θ

)n

i,j,l

Note that changes in wave action from one spectral bin to another are usually small, at
least away from blocking frequency and considering broad wave spectra, so that both the
numerical dispersion and diffusion produced by the hybrid scheme and its lack of causality
preservation is likely to be much less significant.

3.2.4 Conservative elimination of negative energy densities

The numerical solution obtained with the hybrid central/upwind scheme Eqs. (3.14) and
(3.15) is, in principle, not free from spurious oscillations or wiggles, unless µ = ν = 0.
However, these wiggles will not result in negative densities in the energy-containing part of
the two-dimensional wave spectrum, as they occur against a background level of energy. On
the other hand, the flanks of the spectrum are immediately adjacent to bins of zero energy.
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Hence, negative energy prevails especially in these flanks, either at very low frequencies
(∼ 0.03 Hz) or in the edges of spread waves, which is likely to be generated by the hybrid
scheme exhibiting numerical dispersion. Since broad banded wave energy field is relatively
smooth away from blocking frequency (low gradients), these negative energy densities tend
to be rather small. They can be effectively removed through the so-called conservative
elimination (Tolman, 1991). In short, all negative energy density for each frequency within
a sweep is removed, and the energy densities for all directions within this directional sector
at a given frequency are multiplied by a constant factor to conserve energy.

The conservative elimination algorithm is outlined as follows. For a given frequency f and
a given directional range [θ1, θ2] of one of the four sweeps, we differentiate between positive
and negative contributions of the energy density, as follows

E (f, θ) = E+ (f, θ) + E− (f, θ)

with E+ > 0 and E− < 0. Next, we compute the total energy within the sweep at frequency
f

Etot (f) =
∫ θ2

θ1
E (f, θ) dθ

and we integrate the positive densities over the considered directions

Ep
tot (f) =

∫ θ2

θ1
E+ (f, θ) dθ

Based on these two quantities, we compute the following factor

α (f) =
Etot (f)

Ep
tot (f)

≤ 1

Finally, we remove the negative contributions by setting E− (f, θ) = 0, while the positive
densities are multiplied by factor α (f) to preserve the total energy at given frequency f .

The effectiveness of this conservative elimination algorithm can, however, be poor for a
number of reasons. One of the reasons is that the directional resolution is too coarse for
the scale of directional spreading, so that energy is spread over a few directional bins.
For instance, a wave spectrum with small directional spreading (< 10o) distributed over a
number of directional bins of each 10o within a sweep. As a result, within this directional
sector the total amount of negative densities can be larger than the amount of positive
ones. This implies α < 0. In such a case, conserving energy within this sweep makes no
sense, and we will then eliminate the negative energy densities and to leave the positive
densities as they are. This is called strict elimination. It must be noted that in that case
the hybrid scheme Eq. (3.15) is inaccurate anyway, and strict elimination will most likely
not worsen this case.

Another reason is the frequent occurrence in the exchange of wave energy between dir-
ectional sweep sectors (see Section 3.4 for details), which may enhance the gradient in
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the energy density locally and thereby generates more negative energy densities. This is
particular the case if the directional discretization is too coarse for the scale of spreading.
Finally, a relatively strong turning rate tends to provoke strict elimination.

As a rule, for a typical field case over 95% of the number of occurrences of elimination of
negative energy densities concerns conservative elimination. Hence, less than 5% of this
number is related to (non-conserved) strict elimination, which is acceptable.

3.3 Solution algorithm

The implicit discretization of the action balance equation (2.18) as described in Section 3.2
yields a system of linear equations that need to be solved. The corresponding matrix
structure can take different forms, mainly depending on the propagation of wave energy
in the geographic space. For instance, suppose that cx > 0 and cy > 0, everywhere. Then,
the matrix structure has the following form:
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. x . x x x . x . .

. . x . x x x . x .

. . . x . x x x . x







. (3.16)

One recognizes that the subblocks on the main diagonal express coupling among the
unknowns in the (σ, θ)−space for each geographic grid point, whereas the off-diagonal
subblocks represent coupling across geographical grid points. The ordering of grid points
is determined by the direction of wave propagation. This system can be solved with a
Gauss-Seidel technique in one step, if the wave characteristic is a straight line and con-
stant everywhere (Wesseling, 1992). In addition, this number is independent of grid size.
Hence, the complexity of this algorithm is O(M) for a total of M grid points.

After each propagation update at geographic grid point, an update in the spectral space
must be made. We divide all wave directions into a number of groups according to their
directions, and order the grid points accordingly for the update. This is called a sweep.
Since every internal grid point has the same number of edges with fixed directions, same
division can be made within the (σ, θ)-space, resulting in four quadrants of each 90o, as
illustrated in Figure 3.1. In this case we have four sweeps and the selected wave directions
in each sweep form the domain of dependence appropriate for update. This immediately
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satisfies the CFL criterion. This criterion is related to the causality principle. In general,
a numerical scheme must look for information by following characteristics in an upwind
fashion. Causality can be preserved in the iteration process by means of ordering grid
points according to the propagation direction, which guarantees convergence in a finite
number of iterations. We will come back to that later in Section 3.4.

x

y

x

y y

SWEEP 3

x x

y

SWEEP 2SWEEP SWEEP 41

Figure 3.1: The solution procedure for wave energy propagation in geographical space with
the appropriate directional quadrant (indicated by shaded area) for each of four sweeps.

The Gauss-Seidel iteration process is done as follows. For each iteration, sweeping through
grid rows and columns in geographical domain are carried out, starting from each of the
four corners of the computational grid. After four sweeps, wave energy has been propag-
ated over the entire geographical domain. During each sweep, only a subset of the unknown
values of N are updated depending on the sign of cx and cy. For instance, the first sweep
starts at the lower left hand corner and all grid points with cx > 0 and cy > 0 are up-
dated. Because of the causality principle these transport velocities must be positive in
those ordered grid points along the wave ray, in order to make a stable iterative update.
Moreover, adapting the ordering of updates of the unknowns N in geographical space to
the propagation direction improves the rate of convergence of the Gauss-Seidel iterative
procedure (Wesseling, 1992). For an illustrative explanation of this technique, see Sec-
tion 3.5.

Due to the implicit nature of the spectral propagation terms in Eq. (3.2), a system of equa-
tions must be formed (i.e. one of the main diagonal of the matrix Eq. (3.16)). Furthermore,
due to the fact that the source term Stot in Eq. (3.2) is nonlinear in N , linearization is
required in order to find a solution. Generally, the term Stot in each bin (l,m) is treated
by distinguishing between positive and negative contributions and arranging these in the
linear form (Ferziger and Perić, 1999):

Stot = Sp
tot + Sn

totN , (3.17)
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where Sp
tot consists of positive contributions and Sn

tot of negative ones. Both contributions
are independent of the solution N at the corresponding bin (l,m). Any negative term
that does not contain N as a multiplier is first divided by N obtained from the previous
iteration level and then added to Sn

tot. This stabilizes the iteration process. Details on the
application of this principle to each source term in SWAN can be found in Booij et al.
(1999).

The strongly nonlinear source term of depth-induced wave breaking is linearized by means
of the Newton-Raphson iteration, as follows

Sn ≈ φn−1En +

(
∂S

∂E

)n−1

(En − En−1) (3.18)

Since this process of depth-induced wave breaking has been formulated such that S = aStot

and E = aEtot, the derivative ∂S/∂E is analytically determined as ∂Stot/∂Etot. Here, a
is identical in both expressions and the total energy Etot and total source Stot are the
integrals over all frequencies and directions of E(σ, θ) and Sds,br(σ, θ), respectively.

As such, each difference equation (3.2) using expressions (3.14), (3.15) and (3.17) provides
an algebraic relation between N at the corresponding bin and its nearest neighbours:

aPNP = aLNL + aRNR + aBNB + aTNT + bP , (3.19)

where P corresponds to central bin (l,m) and L(eft), R(ight), B(ottom) and T(op) cor-
respond to (l − 1,m), (l + 1,m), (l,m − 1) and (l,m + 1), respectively. Furthermore, the
coefficients ak, k ∈ {P,L,R,B,T} arise from the discretizations of the fluxes cσN and cθN
and bP contains the positive contributions of the source term Sp

tot in (3.17) and the updated
fluxes cxN (3.3) and cyN (3.4). Note that coefficient aP includes −Sn

tot.

The linear system of equations (3.19) for all bins within a directional quadrant at a par-
ticular geographical point is denoted by

A ~N = ~b , (3.20)

where A ∈ IRK×K contains the coefficients ak, k ∈ {P,L,R,B,T} (and corresponds to a

subblock on the main diagonal of (3.16)), ~b ∈ IRK contains the coefficient bP and boundary

values and ~N ∈ IRK denotes an algebraic vector containing the unknown action density
values. Matrix A is non-symmetric. The dimension K of a directional quadrant equals
Nσ×1/4Nθ. Note that linearization of the source term (3.17) enhances diagonal dominance

of A, thereby improving numerical stability. Also note that neither A nor ~b depends on
the unknowns. Each row in the matrix A corresponds to a bin (l,m). The main diagonal
contains the coefficients aP and directly to the left and right are the coefficients −aB and
−aT, respectively. The coefficients −aL and −aR are on the diagonals that are Nθ positions
to the left and right of the main diagonal, respectively.

The solution ~N is given by A−1~b. Since, the only non-zero matrix elements are situated in
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five diagonals, iterative solution methods that utilize the sparsity of A optimally are very
attractive. In SWAN, the solution of Eq. (3.20) is found by means of an incomplete lower-
upper decomposition method followed by an iteration process called the Strongly Implicit
Procedure (SIP) (Ferziger and Perić, 1999). This procedure is specifically designed for
(non-symmetric) penta-diagonal systems and is relatively fast. Note that in the absence
of mean current there are no shifts in the frequency, and consequently the structure of A
reduces to a tri-diagonal one, i.e. aL = aR = 0, which can be inverted efficiently with the
Thomas algorithm (Press et al., 1993; Ferziger and Perić, 1999).

3.4 Iteration process and stopping criteria

Generally, the velocities cx and cy have different signs in the geographical domain and
hence, more steps are needed. Energy propagates along a wave ray and this cannot be
done in 1 iteration as soon as this ray is curved. Wave rays can be curved in coastal waters
due to depth changes and ambient current. This enhances the number of iterations as it
must cover the propagation of energy density along the whole characteristic curve. The
key issue is the maximum number of iterations needed to cover energy propagation across
the model domain.

Any wave ray can be divided into a finite number of pieces so that each piece can be covered
effectively by one of the four sweeps. This number is related to the directional change of
the wave ray. Since these pieces have to be captured sequentially the total number of
iterations needed is proportional to the number of pieces. In turn, this number depends
on the size of the model domain and the way the waves propagate through the domain.

If the source terms are included then in every wet grid point a balance between refraction,
wind input, white capping, wave breaking, etc. within the spectral space is evaluated. On
top of this various wave components are marching in the model domain from the open
boundaries. It depends on the strength of the source terms on the one hand and propaga-
tion throughout the domain and the domain size on the other hand how many iterations
are actually needed. As a matter of fact, the total number of iterations depends rather
on the local change in wave propagation e.g. in shallow waters, tidal inlets, and around
shoals, irrespective of the ordering and sweeping.

Due to refraction and nonlinear wave energy transfer, interactions occur between the dir-
ectional quadrants. To properly take these interactions into account and the fact that we
employ the Gauss-Seidel technique and linearization of the source term (3.17), the quad-
rant sweeping and the solution of system (3.20) need to be repeated until some convergence
criteria are met. The iteration process runs from s = 1 to s = S and is terminated if the
maximum number of iterations S (usually 50) is reached or the following criteria for the
significant wave height Hm0 and mean relative wave period Tm01, as given by

Hm0 = 4
√
m0 , Tm01 = 2π

m0

m1

, mj =
∫ ∞

0

∫ 2π

0
σjE(σ, θ)dσdθ , (3.21)
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are both satisfied in at least 98% of all wet grid points (i, j):

|∆Hs
m0(i, j)|

Hs−1
m0 (i, j)

< εrH or |∆Hs
m0(i, j)| < εaH (3.22)

and
|∆T s

m01(i, j)|
T s−1
m01(i, j)

< εrT or |∆T s
m01(i, j)| < εaT . (3.23)

Here, ∆Qs ≡ Qs−Qs−1, with Q some quantity. The default values of this limiting criteria
are: εrH = εrT = 0.02, εaH = 0.02 m and εaT = 0.2 s. The rationale behind the use of
the integral wave parameters Hm0 and Tm01 in the stopping criteria is that these are the
output variables typically of interest. The iterative solution procedure is accelerated by
calculating a reasonable first guess of the wave field based on second-generation source
terms of Holthuijsen and De Boer (1988).

In general, the iterative method should be stopped if the approximate solution is accurate
enough. A good termination criterion is very important, because if the criterion is too weak
the solution obtained may be useless, whereas if the criterion is too severe the iteration
process may never stop or may cost too much work. Experiences with SWAN have shown
that the above criteria (3.22) and (3.23) are often not strict enough to obtain accurate
results after termination of the iterative procedure. It was found that the iteration process
can converge so slowly that at a certain iteration s the difference between the successive
iterates, Hs

m0 − Hs−1
m0 , can be small enough to meet the convergence criteria, causing the

iteration process to stop, even though the converged solution has not yet been found.
In particular, this happens when convergence is non-monotonic such that the process is
terminated at local maxima or minima that may not coincide with the converged solution.

Furthermore, it became apparent that, unlike Hm0, the quantity Tm01 is not an effective
measure of convergence. It was found that the relative error in Tm01, i.e. |T s

m01−T s−1
m01|/T s−1

m01,
does not monotonically decrease near convergence, but keeps oscillating during the iteration
process. This behaviour is due to small variations in the spectrum at high frequencies, to
which Tm01 is sensitive. This behaviour is problematic when any form of stricter stopping
criterion is developed based on Tm01. Therefore, in the improved termination criterion
proposed, Tm01 has been abandoned as a convergence measure and onlyHm0, which displays
more monotonic behaviour near convergence, is retained.

Stiffness and nonlinearity of the action balance equation are found to yield less rapid and
less monotone convergence. Ferziger and Perić (1999) explain the slow convergence in
terms of the eigenvalue or spectral radius of the iteration process generating the sequence
{φ0, φ1, φ2, ...}. They show that the actual solution error is given by

φ∞ − φs ≈ φs+1 − φs

1− ρ
, (3.24)

where φ∞ denotes the steady-state solution and ρ is the spectral radius indicating the rate
of convergence. The smaller ρ, the faster convergence. This result shows that the solution
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error is larger than the difference between successive iterates. Furthermore, the closer ρ
is to 1, the larger the ratio of solution error to the difference between successive iterates.
In other words, the lower the rate of convergence of the iteration process, the smaller this
difference from one iteration to the next must be to guarantee convergence. The stopping
criterion of SWAN could be improved by making the maximum allowable relative increment
in Hm0 a function of its spectral radius instead of imposing a fixed allowable increment. By
decreasing the allowable relative increment as convergence is neared, it would be possible
to delay run termination until a more advanced stage of convergence. Such a stopping
criterion was used by, e.g. Zijlema and Wesseling (1998). This criterion is adequate if the
iteration process converges in a well-behaved manner and ρ < 1 for all iterations. However,
due to nonlinear energy transfer in spectral space SWAN typically does not display such
smooth behaviour. Therefore, this criterion may be less suited for SWAN.

An alternative way to evaluate the level of convergence is to consider the second derivat-
ive or curvature of the curve traced by the series of iterates (iteration curve). Since the
curvature of the iteration curve must tend towards zero as convergence is reached, termin-
ating the iteration process when a certain minimum curvature has been reached would be a
robust break-off procedure. The curvature of the iteration curve of Hm0 may be expressed
in the discrete sense as

∆(∆H̃s
m0)

s = H̃s
m0 − 2H̃s−1

m0 + H̃s−2
m0 , (3.25)

where H̃s
m0 is some measure of the significant wave height at iteration level s. To eliminate

the effect of small amplitude oscillations on the curvature measure, we define H̃s
m0 ≡

(Hs
m0+Hs−1

m0 )/2. The resulting curvature-based termination criterion at grid point (i, j) is
then

|Hs
m0(i, j)− (Hs−1

m0 (i, j) +Hs−2
m0 (i, j)) +Hs−3

m0 (i, j)|
2Hs

m0(i, j)
< εC , s = 3, 4, ... , (3.26)

where εC is a given maximum allowable curvature. The curvature measure is made non-
dimensional through normalization with Hs

m0. Condition (3.26) must be satisfied in at least
99% of all wet grid points before the iterative process stops. This curvature requirement is
considered to be the primary criterion. However, the curvature passes through zero between
local maxima and minima and, at convergence, the solution may oscillate between two
constant levels due to the action density limiter (see Section 3.7.2), whereas the average
curvature is zero. As safeguard against such a situation, the weaker criterion (3.22) is
retained in addition to the stricter criterion (3.26).

Since version 41.01, the curvature-based stopping criteria, Eqs. (3.26) and (3.22) are
the default, whereas the previous employed stopping criteria, Eqs. (3.22) and (3.23), are
obsolete.
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3.5 An illustrative explanation of the sweeping ap-

proach

In the absence of a current, the direction of propagation of the wave crest is equal to that
of the wave energy. For this case, the propagation velocity of energy (cx, cy) is equal to the
group velocity (cg,x, cg,y). In presence of a current this is not the case, since the propagation
velocities cx and cy of energy are changed by the current. Considering the applied numer-
ical procedure in SWAN, it is initially more convenient to explain the basic principles of
the numerical procedure in the absence of a current than in the situation where a current
is present. So, first, we shall focus on the sweeping technique in the absence of a current.
After this, we shall discuss the numerical procedure in case a current is present.

The computational region is a rectangle covered with a rectangular grid. One of the axes
(say the x−axis) is chosen arbitrary, for instance perpendicular to the coast. The state in
a grid point (xi,yj) in an upwind stencil is determined by its up-wave grid points (xi−1,yj)
and (xi,yj−1). This stencil covers the propagation of action density within a sector of
0o−90o, in the entire geographic space; see Figure 3.2. Hence, this procedure is called

y

x

0

90
o

o

Figure 3.2: Numerical scheme for wave propagation in geographic space with below the
first quadrant for which the waves are propagated.

sweep 1 and encloses all wave energy propagation over the first quadrant in spectral space.
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This quandrant is the corresponding domain of dependence in the directional space. By
rotating the stencil over 90o, the next quadrant 90o−180o is propagated. Rotating the sten-
cil twice more ensures propagation over all four quadrants (see Figure 3.1). This allows
waves to propagate from all directions. Hence, the method is characterized as a four-sweep
technique.

The gain of such a stencil is that the propagation is unconditionally stable because the
wave characteristics lie within the concerning quadrant. Thus, propagation is not subjec-
ted to a CFL criterion. In addition, the principle of causality requires that the numerical
domains of dependence of both geographic and spectral spaces must be identical.

In cases with bottom refraction or current refraction, action density can shift from one
quadrant to another. This is taken into account in the model by repeating the compu-
tations with converging results (iterative four-sweep technique). Typically, we choose a
change of less then 1% or so in significant wave height and mean wave period in all geo-
graphic grid points to terminate the iteration (see Section 3.4).

Note, however, we may even choose more sweeps than the proposed 4 ones3. The number
of sweeps is denoted by M and the directional interval of each sweep equals 360o/M . It
is expected that the number of iterations may reduced, since the solution is guaranteed
to be updated for all wave directions at all grid points in one series of sweeps, provided
the directional interval is sufficiently small (e.g. 8 sweeps with an interval of 45o each, or
12 sweeps of each 30o). This is certainly the case at deep water where wave rays are just
straight lines. However, at shallow water, this becomes less obvious because of the presence
of refraction. In this case the wave energy may jump multiple directional bins in one (large)
time or distance step. It may leave a sweep sector too early or it may even skip this sweep,
especially when the sweep interval is relatively small (< 30o) and depth changes per grid
cell are relatively large. The result is that wave rays erroneously cross and that a number
of wave components in one sweep within one time/distance step overtakes some other bins
in another sweep ahead, which implies that causality is violated, resulting in a possible
model instability. See also Section 3.8.3. Hence, for such shallow water cases, choosing a
relative large number of sweeps, M > 4, is more likely to prove counter-productive.

The numerical procedure as described above remains in principle the same when a current
(Ux,Uy) is present. The main difference is that the propagation velocities of energy are no
longer equal to the group velocity of the waves but become equal to cx = cg,x + Ux and
cy = cg,y + Uy. To ensure an unconditionally stable propagation of action in geographical
space in the presence of any current, it is first determined which spectral wave components
of the spectrum can be propagated in one sweep. This implies that all wave components
with cx > 0 and cy > 0 are propagated in the first sweep, components with cx < 0 and
cy > 0 in the second sweep, components with cx < 0 and cy < 0 in the third sweep, and
finally, components cx > 0 and cy < 0 in the fourth sweep. Since the group velocity of

3Although in SWAN the number of sweeps equals 4 and is hard-coded.
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the waves decreases with increasing frequency, the higher frequencies are more influenced
by the current. As a result, the sector boundaries in directional space for these higher
frequencies change more compared to the sector boundaries for the lower frequencies. In
general, four possible configurations do occur (see Figure 3.3). Consider, for instance, one
fixed frequency propagating on a uniform current. The current propagates at an angle
of 45o with the x−axis. The sign of the current vector and strength of the current are
arbitrary. The shaded sectors in Figure 3.3 indicate that all the wave components that are
propagating in the direction within the shaded sector, are propagated in the first sweep
(cx > 0, cy > 0).

C C

CC

C C

CCx x

xx

y

y y

y

(A)

(D)

(B)

(C)

Figure 3.3: Four possible configurations and propagation velocities cx, cy for a fixed fre-
quency in the presence of a current propagating at an angle of 45o with the x−axis.

The top-left panel (A) represents a situation in which both cx and cy are negative due to
a strong opposing current, i.e. wave blocking occurs. None of the wave components is
propagated within the first sweep. The top-right panel (B) represents a situation in which
the current velocity is rather small. The sector boundaries in directional space are hardly
changed by the current such that the sector boundaries are approximately the same as in
the absence of a current. The bottom-left panel (C) reflects a following current that causes
the propagation velocities of the wave components in two sectors to be larger than zero. In
this specific case, all the waves of the shaded sectors are propagated within the first sweep.
The bottom-right panel (D) represents a case with a strong following current for which all
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the action is take along with the current. For this case the fully 360o sector is propagated
in the first sweep.

After it has been determined which wave components are propagated in one sweep, i.e.,
the sector boundaries in directional space have been determined for each frequency, the
integration in frequency and directional space can be carried out for those wave compon-
ents.

3.6 Implementation of DIA within the four-sweep tech-

nique

In SWAN, the quadruplets are integrated using the DIA, see Section 2.3.4. As a con-
sequence of the four-sweep technique, two different types of methods can be used to cal-
culate the four wave-wave interactions.

1. The first method implies that the interactions are calculated in every iteration prior
to the first sweep. This method ensures conservation of energy density, but has the
disadvantage that the spectral source term Snl4(σ, θ) for every grid point in geograph-
ical space has to be stored in internal memory. Such an integration method increases
the amount of required memory with a factor about 2. The source term is stored
in memory and is then explicitly integrated for a particular sweep. This method is
particularly useful when ambient current is included.

2. The second method is slightly different, in which the interactions are calculated and
integrated for every sweep separately. The calculation of the energy transfer for
a specific quadrant requires also the calculation of the transfer within a sector of
about 33o in the adjacent two quadrants. Calculating the interactions for one sweep
increases the computation time for the quadruplets with a factor of about 1.66 (2
adjacent sectors of 33o times 4 sweeps divided by 360o). Contrary to the first method,
the total rate of this energy shift is not stored in memory so that energy density is
not conserved per sweep (and per iteration). However, this does not influence the
converging results. Within this second method, two different numerical schemes are
available, namely, a semi-implicit scheme and a fully explicit scheme. The use of
a fully explicit scheme is recommended because of the computational efficiency. A
semi-implicit scheme increases the computation time of the quadruplets with a factor
of about 2. Note that this method does not work when ambient current is included
in the model. The reason is that the bounds of the directional sector within a sweep
may not be the same for every frequency bin. So there may be some overlap of
frequency bins between the quadrants, and so this method does not conserve energy
anymore. To prevent this the user is advised to choose the first method.
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3.7 Action density limiter and under-relaxation

3.7.1 Introduction

The accuracy with which physical processes for wave growth are approximated numeric-
ally is of crucial importance in assessing the predictive realism of spectral wave models.
There is a need to separate these numerical errors from errors due to physical modelling.
Third-generation wave models pose a numerical difficulty caused by the presence of mul-
tiple time scales. This is a reflection of the physical nature of wind waves, which consist
of a wide range of frequencies. The ratio of the largest to the smallest time scale of spec-
tral components is often substantially larger than one. When this is the case, the action
balance equation is called stiff (Press et al., 1993)4. Taking proper account of these time
scales is a necessary condition for numerical accuracy. This would require the use of a
very small time step in a numerical algorithm, which may be impractical. Moreover, the
action balance equation is usually so stiff that its numerical implementation combined with
economically large time steps often prevent a stable solution. In this respect, nonlinear
four-wave interaction usually poses the biggest problem, since this process is associated
with high sensitivity to spectral change.

In a number of papers concerning spectral wave computation, numerical measures are pro-
posed to achieve stable model results economically. WAMDI Group (1988) suggest to use a
semi-implicit time integration scheme with a time step that matches the time scale of low-
frequency waves. However, numerically stable solution of the resulting sytem of equations
can not be guaranteed (Hargreaves and Annan, 2001). The ratio of the largest eigenvalue
to the smallest eigenvalue of the stiff system of equations, called the condition number, can
be so large that even a fully-implicit method combined with large time steps precludes a
stable solution. For counterexamples, see Hargreaves and Annan (2001). The only remedy
is time step reduction or under-relaxation so that the modified system of equations has a
spectrum of eigenvalues with a more favourable condition number.

To guarantee numerical stability at relatively large time steps, the so-called action density
limiter has been introduced in WAM in the early 1980’s (Hersbach and Janssen, 1999).
This limiter restricts the rate of change of the energy spectrum at each time step. Because
low-frequency waves carry the most energy, it is desirable to solve the balance equation in
this part of the spectrum accurately without intervention by the limiter, whereas for high-
frequency waves using an equilibrium level is sufficient. Although this approach lacks a
rigorous foundation and is not generally applicable or valid, it appears to guarantee numer-
ical stability at relatively large time steps even when these do not match the time scales of
wave growth. Moreover, it is believed that the limiter will not affect the stationary solution
when convergence is reached. This assumption is widely employed as a justification for the
use of limiters. For an overview, we refer to Hersbach and Janssen (1999) and Tolman
(2002) and the references quoted therein. Tolman (1992) proposes an alternative to the

4The equivalent situation for such an equation is to have eigenvalues of very different magnitudes.
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action density limiter in which the time step is dynamically adjusted where necessary to
ensure accurate wave evolution. The calculation of this optimal time step is related to the
action density limiter. Further details can be found in Tolman (1992, 2002). .

The steady-state solution in the SWAN model is obtained in an iterative manner, which
can be regarded as a time marching method with a pseudo time step. This pseudo time
step generally does not match the relatively small time scale in frequency space and con-
sequently, divergence will occur. Therefore, SWAN makes use of the action density limiter
to stabilize the iteration process (Booij et al., 1999). However, experience with SWAN has
revealed that the limiter acts not only in the equilibrium space, but also in the energy-
containing part of the wave spectrum. This finding is also confirmed by Tolman (2002).
Furthermore, the limiter appears to be active over almost all spectra in the geographical
domain and during the entire iteration process. This activity has been associated with
poor convergence behaviour, such as small-amplitude oscillation in frequency space. Ris
(1999) demonstrated that stationary SWAN results are influenced by the settings of the
action limiter while De Waal (2001) suspects that the limiter acts as a hidden sink in the
source term balance under equilibrium conditions. The question to what extent this limiter
adversely affects the stationary solution of SWAN has not been addressed previously, and
is considered here.

An alternative way to restrict the high rate of change at higher frequencies is under-
relaxation, i.e. making smaller updates by means of a much smaller (pseudo) time step
(Ferziger and Perić, 1999). Consequently, a limiter may no longer be needed. Although
this approach may be suitable to SWAN, it slows down convergence significantly. Here, we
propose a new method that finds a compromise between fast convergence on the one hand
and minimizing the role of the limiter in the energetic part of the spectrum on the other.
The key idea to achieve this is to link the extent of updating to the wave frequency - the
larger the frequency, the smaller the update. This approach is therefore called frequency-
dependent under-relaxation.

3.7.2 Convergence-enhancing measures

As explained in Section 3.7.1, many time scales are involved in the evolution of wind
waves. The high-frequency waves have much shorter time scales than the low-frequency
waves, rendering the system of equations (3.20) stiff. If no special measures are taken,
the need to resolve high-frequency waves at very short time scales would result in extreme
computational time. For economy, it is desirable that a numerical technique can be used
with a large, fixed time step. Moreover, we are mainly interested in the evolution of slowly
changing low-frequency waves. For stationary problems, we are interested in obtaining
the steady-state solution. Unfortunately, the convergence to the steady state is dominated
by the smallest time scale and, in the absence of remedial measures, destabilizing over-
and undershoots will prevent solution from converging monotonically during the iteration
process. These oscillations arise because of the off-diagonal terms in matrix A, which can
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be dominant over the main diagonal, particularly when the ratio σmax/σmin is substantially
larger than one. As a consequence, convergence is slowed down and divergence often
occurs. To accelerate the iteration process without generating instabilities, appropriately
small updates must be made to the level of action density.

With the development of the WAMmodel, a so-called action density limiter was introduced
as a remedy to the abovementioned problem. This action limiter restricts the net growth
or decay of action density to a maximum change at each geographic grid point and spectral
bin per time step. This maximum change corresponds to a fraction of the omni-directional
Phillips equilibrium level (Hersbach and Janssen, 1999). In the context of SWAN (Booij
et al., 1999), this is

∆N ≡ γ
αPM

2σk3cg
, (3.27)

where γ ≥ 0 denotes the limitation factor, k is the wave number and αPM = 8.1×10−3 is the
Phillips constant for a Pierson-Moskowitz spectrum (Komen et al., 1994). Usually, γ = 0.1
(Tolman, 1992)5. Note that when the physical wind formulation of Janssen (1989,1991a)
is applied in SWAN, the original limiter of Hersbach and Janssen (1999) is employed.
Denoting the total change in Ni,j,l,m from one iteration to the next after Eq. (3.2) by
∆Ni,j,l,m, the action density at the new iteration level is given by

N s
i,j,l,m = N s−1

i,j,l,m +
∆Ni,j,l,m

|∆Ni,j,l,m|
min{|∆Ni,j,l,m|,∆N} . (3.28)

For wave components at relatively low frequencies, Eq. (3.28) yields the pre-limitation out-
come of Eq. (3.2), because, for these components, the pseudo time step matches the time
scale of their evolution. For high-frequency waves, however, Eq. (3.28) gives the upper
limit for the spectrum to change per iteration due to the limiter, Eq. (3.27). For typical
coastal engineering applications, it is sufficient to compute the energy-containing part of
the wave spectrum accurately. In other words, action densities near and below the spectral
peak should not be imposed by the limiter (3.27). However, our experiences with SWAN
have shown that the limiter is active even close to the peak. Furthermore, during the entire
iteration process, the limiter is typically active at almost every geographic grid point.

The alternative measure to enhance the convergence of the stable iteration process con-
sidered here is so-called false time stepping (Ferziger and Perić, 1999). Under-relaxation
terms representing the rate of change are introduced to enhance the main diagonal of A
and thus stabilize the iteration process. The system of equations (3.20) is replaced by the
following, iteration-dependent system

~N s − ~N s−1

τ
+ A ~N s = ~b (3.29)

5It is noted here that the effective γ used in SWAN is not equivalent to that of WAM: the former is a
factor 2π larger.
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with τ a pseudo time step. The first term of Eq. (3.29) controls the rate of convergence
of the iteration process in the sense that smaller updates are made due to decreasing τ ,
usually at the cost of increased computational time. To deal with decreasing time scales
at increasing wave frequency, the amount of under-relaxation is enlarged in proportion to
frequency. This allows a decrease in the computational cost of under-relaxation, because at
lower frequencies larger updates are made. This frequency-dependent under-relaxation can
be achieved by setting τ−1 = ασ, where α is a dimensionless parameter. The parameter
α will play an important role in determining the convergence rate and stability of the
iteration process. Substitution in Eq. (3.29) gives

(A+ ασI) ~N s = ~b+ ασ ~N s−1 . (3.30)

When the steady state is reached (i.e. s→∞), system (3.30) solves A ~N∞ = ~b since, ~N∞

is a fixed point of (3.30).

Suitable values for α must be determined empirically and thus robustness is impaired. For
increasing values of α, the change in action density per iteration will decrease in the whole
spectrum. The consequence of this is twofold. Firstly, it allows a much broader frequency
range in which the action balance equation (3.2) is actually solved without distorting
convergence properties. Secondly, the use of the limiter will be reduced because more
density changes will not exceed the maximum change due to Eq. (3.27). Clearly, this effect
may be augmented by increasing the value of γ in Eq. (3.27).

To allow proper calculation of the second-generation first guess of the wave field (see Section
3.3), under-relaxation is temporarily disabled (α = 0) during the first iteration. Whereas
this measure is important in achieving fast convergence, it does not affect stability, since
the second-generation formulations do not require stabilization.

3.8 On the approximation of refraction in large-scale

SWAN applications

3.8.1 Introduction

In some large-scale applications SWAN is known to produce seemingly unstable results.
One of the causes is the coarseness of the grid − usually the unstructured one. This issue
will be dealt with in Section 3.8.5. Another cause is the fully implicit treatment of the
refraction term when dealing with non-stationary runs. Implicit schemes allow propagation
of wave energy using a large time step. In this treatment the value of cθ is determined at
the point where the action density is to be updated. If this value does vary too much over
one time step, causality may not be preserved. Usually, this is not the case in small scale
coastal applications.

In large scale oceanic applications, however, the depth may vary from one grid point to
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the next by a factor of over 10 (e.g. in presence of seamounts). Then the value of cθ at the
shallowest grid point is not representative anymore of the interval between the two grid
points, and it is justified to limit the value to one that is representative. The problem now
is to find a limitation which on the one hand guarantees smooth behaviour in large-scale
applications and which has no influence on small-scale applications. This will be elaborated
in Section 3.8.3.

Related to the aforementioned problems we first elaborate the consequences of the law of
constant energy flux along the wave ray (Whitham, 1974) in the next section.

3.8.2 Energy transport along wave rays

In this section we focus on the following transport processes: shoaling and refraction.
Calculating the wave shoaling and refraction effects is necessary to predict accurately
shallow water wave conditions, either in the surf zone, across the main channels in estuaries,
or across the seamounts. Throughout this section we assume the absence of the non-
conservative source/sink terms, such as wind input, nonlinear wave-wave interactions and
energy dissipation. The governing equation is the following wave energy balance (ambient
current is not included)

∂E

∂t
+∇~x · (~cgE) +

∂cθE

∂θ
= 0 (3.31)

Eq. (3.31) is linear and strict hyperbolic with nonlinear coefficients, whereas its charac-
teristics (trajectories) in the (~x, θ)−space are generally not straight lines due to a varying
seabed topography. Along the characteristics the wave energy fluxes ~cgE and cθE are con-
stant (Whitham, 1974).

We may rewrite Eq. (3.31) in a characteristic form, as follows

dE

dt
= −

(
∇~x · ~cg +

∂cθ
∂θ

)
E (3.32)

with the total derivative of E defined as

dE

dt
≡ ∂E

∂t
+ ~cg · ∇~xE + cθ

∂E

∂θ
(3.33)

along a trajectory of energy propagation with slopes

d~x

dt
= ~cg = (cg,x, cg,y) ,

dθ

dt
= cθ

Let us consider a stationary wave characteristic with slope

d~x

dθ
=

~cg
cθ

(3.34)
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If there is no change in the seabed along the wave ray, the group velocity is constant.
In addition, if there is no depth variation along the wave crest, then the turning rate is
zero. Hence, the characteristic (3.34) in the (~x, θ)−space is in this case the direction of
propagation (with group velocity). By virtue of Eq. (3.32), the total energy E is thus
constant along the same characteristic. However, due to depth variations, wave energy will
either increase or decrease along its curved characteristic.

The right hand side of Eq. (3.32) can be considered either as a source term or a sink term.
This depends on the gradients of the group velocity and turning rate along the wave ray
and wave crest, respectively. The rate at which the energy in- or decreases is related to
the relaxation time τ , which is the typical time scale for wave energy transport to reach
steady state after being disturbed. It is given by

τ−1 =

∣∣∣∣∣∇~x · ~cg +
∂cθ
∂θ

∣∣∣∣∣

The importance of this relaxation time relates to the choice of discretization steps for the
purpose of accurate integration of Eq. (3.32). In this respect, the numerical accuracy with
respect to the change in wave energy from one step to the next along the characteristic,
viz. Eq (3.33), is determined by the time step, grid size, and directional bin size (see
Section 3.8.3). The associated step size is denoted by ∆T . Causality requires that wave
energy propagates in the right direction along its characteristic, and at the right speed.
For example, causality problem can be present in an implicit scheme that propagates wave
energy across a large distance using a large time step. In other words, if this time step
is too large, some wave components getting ahead of themselves and leaving behind some
other components ahead. To prevent this, temporal, spatial and directional changes in the
numerical and exact solutions must go hand in hand. This implies that ∆T < τ . Hence,
a sufficient condition for accurate integration reads

∣∣∣∣∣∇~x · ~cg +
∂cθ
∂θ

∣∣∣∣∣ ∆T < 1 (3.35)

This condition resembles the Lipschitz criterion6 and is generally less severe than the
traditional CFL criterion for numerical stability. We may rewrite Eq. (3.35) in Cartesian
coordinates as ∣∣∣∣∣

∂cg,x
∂x

+
∂cg,y
∂y
− |~cg|

k

(
∂k

∂x
cos θ +

∂k

∂y
sin θ

)∣∣∣∣∣ ∆T < 1

with k = |~k| the length of the wave number vector (cf. Eq. (2.14)). This criterion implies
that at locations with relatively large bottom slopes, the step size ∆T must reduce locally to
prevent inaccuracies. This step size is determined by the temporal, spatial and directional

6The Lipschitz criterion is well known in the field of semi-Lagrangian schemes and its interpretation
is that trajectories do not cross each other during one Lagrangian time step. See e.g. Smolarkiewicz and
Pudykiewicz (1992) and Lin and Rood (1996).



Numerical approaches 87

resolutions. In this regard, the interpretation of the Lipschitz criterion (3.35) is that the
maximum step size is determined by the numerical accuracy rather than by the numerical
stability. This accuracy aspect is related to the curvature of the wave propagation field
(due to change in wave direction over a certain distance) at the grid and time resolutions
applied.

In shallower water, medium variations can be significant, i.e. changes in seabed and mean
current can be large within a few wave lengths, whereas ocean waves feature coherent
structures such as refraction over topography and currents. Therefore, one must choose
a geographical grid size proportional to the resolution of the bathymetry capturing its
local features. For instance, near the coast and in the surf zone, a typical grid size of
20 − 50 m is not uncommon in SWAN applications. An important assumption made in
this consideration is that the transport velocities ~cg and cθ do not much vary over a grid
size, so that Lipschitz criterion (3.35) is most likely met. This is reasonable as the wave
characteristics are more or less non-curved lines (during the elapsed time step), because
the propagation in the (~x, θ)−space is slowly time varying. This is generally true in coastal
applications.

In the open ocean, it is assumed that seabed topography is slowly varying in space so that
the directionally spread wave field is rather spatially homogeneous. As such, refraction
effects can be regarded as weak. The grid resolution is usually determined by the resolution
for the wind field that generates the waves locally, which is often much coarser than the
bottom resolution. For example, for oceanic waters, the employed grid size is typically
10 − 50 km. However, there are exceptions. An example are the seamounts in the deeper
parts of the open ocean. At such locations, the depth may vary from one grid point to the
next by a factor of 10 or so or even more. In such a case, the value of the turning rate
cθ at the shallowest grid point is not representative anymore with respect to the distance
between the two considered grid points. Hence, criterion (3.35) is violated, and computed
spectral wave components will simply turn too much and jump multiple directional bins
in one distance step. The result is that a number of wave components in one sweep within
one distance step overtakes some other bins in another sweep ahead, which implies that
causality is violated, resulting in a possible model instability. To circumvent this we must
refine the computational grid locally to resolve the local bathymetric features, and the
Lipschitz criterion (3.35) can be helpful in this. The consequences will be discussed in the
following section.

3.8.3 The problem with refraction in non-stationary applications

In this section we discuss how refraction affects the accuracy of the discretization of the total
derivative of wave energy along a non-curved wave ray. Initially, the energy is uniformly
distributed over the wave directions. Under these conditions, we reconsider Eq. (3.32),

dE

dt
= −∂cθ

∂θ
E
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and we examine the discretization of the following total derivative of the energy density

dE

dt
=

∂E

∂t
+ cx

∂E

∂x
+ cy

∂E

∂y
(3.36)

with (cx, cy) = ~cg the propagation velocity vector in the geographical space. This total
derivative indicates that the time rate of change in energy is computed along the wave
characteristics defined by the following ODEs

dx

dt
= cx ,

dy

dt
= cy .

For the purpose of illustration the spatial derivatives are replaced by first order upwind
differences. If we assume cx and cy positive during the first sweep, see Figure 3.4, then the
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Figure 3.4: Numerical scheme for wave propagation in geographic space with below the
first quadrant for which the waves are propagated, and right the stencil.

approximation of Eq. (3.36) is as follows

En
i,j − En−1

i,j

∆t
+ cx

En
i,j − En

i−1,j

∆x
+ cy

En
i,j − En

i,j−1

∆y
.

Note that the time integration is based on the first order implicit Euler scheme. Further-
more, ∆t is the time step, and ∆x and ∆y are the mesh spaces. This approximation can
be viewed as the well-known semi-Lagrangian approximation, which is rewritten as

(
1

∆t
+

cx
∆x

+
cy
∆y

)
En

i,j −
1

∆t
En−1

i,j −
cx
∆x

En
i−1,j −

cy
∆y

En
i,j−1
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which is, in turn, interpreted as an approximation of the total derivative, Eq. (3.36), as
follows

En
i,j − En−1

i∗,j∗

∆T
(3.37)

with

i∗ = i− p , j∗ = j − q , p =
cx∆T

∆x
, q =

cy∆T

∆y
.

Note that p and q are the Courant numbers. They are not integers, and therefore (i∗, j∗)
is not a grid point. This point, however, lies on the wave characteristic. The quantity
En−1

i∗,j∗ can be interpreted as the value of E at time tn−1 in (i∗, j∗) which is being convected
in (i, j) in a lapsed time ∆T . This value is simply obtained from the interpolation of the
surrounding values En−1

i,j , En
i,j, E

n
i−1,j and En

i,j−1 in the (t, x, y)−plane. In this case, there
is no restriction on time step ∆t as the characteristic lies inside the computational stencil.
Note that the lapsed time ∆T is a function of time step ∆t and grid sizes ∆x and ∆y, and
is called the Lagrangian time step, which should not be confused with the Eulerian time
step ∆t. Generally, ∆T < ∆t.

Causality requires that wave energy being refracted from one directional bin to another
further down must pass through all the bins along a wave crest between them. Hence,
for an accurate time integration along the wave characteristic, viz. Eq. (3.37), we must
employ the Lipschitz criterion (3.35). In the present context, this criterion reads

|∂cθ
∂θ
|∆T < 1

which ensures that wave energy propagate from a bin to the adjacent one during one time
step ∆T . Thus, for physical consistency, a restriction on the time step must be imposed in
order for the wave directions not to cross each other and the boundaries of a quadrant in
the spectral space. Specifically, the Courant number based on ∆T and ∆θ (i.e. directional
bin) must be less than unity, that is,

Cr ≡ |cθ|∆T

∆θ
< 1 (3.38)

with cθ the turning rate7. This condition is a sufficient one and implies the Lipschitz
criterion.

A violation of this criterion implies that the energy can travel in one time or distance
step over a number of directional bins or more than the length of one sweep (which in
the absence of a current is 90o, see Figure 3.4). For example, consider the first sweep,
see Figure 3.4, the boundaries of the first quadrant are the lines 0o and 90o. Next, we
consider the directional sector in the spectral space associated with the considered sweep,
see Figure 3.5. We shall show that condition, Eq. (3.38), is sufficient to assure that

7The spatial turning rate is the change in wave direction per unit forward distance ℓ that is travelled
by the wave energy in a time interval ℓ/cg, and thus represents the curvature of the wave ray. This is
equivalent to cθ, which is the turning rate of the wave direction per unit time.
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θ=0 θ=90
∆θ

oo

θn

Figure 3.5: Directional sector associated with the first sweep.

1) during ∆T the distance travelled in θ−direction is at most ∆θ and 2) wave energy
propagating in any bin in θ−direction will not cross the boundaries of the directional
sector, except for the first and last bins. Hence, this prevents wave rays from intersecting
each other. Note that we implicitly assume that the net change in mean wave direction
within the distance covered during ∆T is less than the directional resolution. Since, by
definition,

dθ

dt
= cθ ,

we may approximate this, as follows,

θn ≈ θn−1 + cθ∆T . (3.39)

For a given n − 1, we choose an arbitrary point, θn−1, inside the directional sector; see
Figure 3.5. If θn−1 > ∆θ then, Eqs. (3.39) and (3.38) imply |θn − θn−1| < ∆θ, and hence
the chosen point at next time step, θn, still lies inside the directional sector. If θn−1 < ∆θ,
i.e. in the first bin, then one obtains

θn = θn−1 +
∆T

∆θ

[
(1− θn−1)cθ(θ = 0o) + θn−1cθ(θ = ∆θ)

]

or

θn = θn−1
(
1− ∆T

∆θ
cθ(θ = 0o)

)
+

∆T

∆θ
cθ(θ = 0o) +

∆T

∆θ
θn−1cθ(θ = ∆θ) .

If cθ(θ = 0o) > 0 and cθ(θ = ∆θ) > 0 then, the point at next step will be keep inside
the directional sector, if Eq. (3.38) holds. In other cases the energy is leaving through
boundary θ = 0o, though the change in direction is limited to the adjacent directional
bin of the other quadrant. This holds also for the last bin and the corresponding right
boundary θ = 90o.

Note that Eq. (3.38) is not required for the stability of the method but contributes to
improve its physical accuracy, so that the principle of causality is obeyed. For instance, in
a large-scale application, one often applies coarse (nested) grids with a desired time step.
Both the mesh width and the time step might be too large to represent wave refraction
appropriately. This is readily seen as follows. We consider stationary, long-crested waves
in (x, θ)−space, propagating at an angle with the positive x−axis. There is a bottom
gradient along this axis so that refraction is present. There are no currents. The associated
characteristic or wave ray is given by dθ/dx = cθ/cg. This is the spatial turning rate, i.e.
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the change in wave direction per unit forward distance. Hence, the directional turn of the
wave crest over a distance ∆x is given by

cθ
cg

∆x

and the Courant number becomes (cf. Eq. (3.38))

Cr =
|cθ|
cg

∆x

∆θ

which must be smaller than unity to prevent crossing of wave rays. The turning rate of
the wave direction per unit time is given by

cθ = −
1

k

∂σ

∂h

∂h

∂m
, (3.40)

where k is the wave number, σ is the frequency, h is the water depth andm is the coordinate
along the wave crest (i.e. orthogonal to the propagation direction). On a coarse grid, the
depth difference in two adjacent grid points ∆h, and thereby cθ, can be very large, especially
for low-frequency components in very shallow water (see also Section 3.8.5). This implies
that the Lipschitz condition may be violated, i.e. Cr ≥ 1.

Complying with the Lipschitz criterion (3.38) simply prevents wave energy to jump over a
number of directional bins, where this energy would go way beyond some other bins ahead.
This was demonstrated to be a useful criterion with respect to the behavior of refraction
when the bathymetry is poorly resolved by the model. As the refraction becomes excessive
in a region with steep bottom gradients, it is possible that the wave rays falsely cross and
that the wave energy focus toward a single grid point, creating unrealistically large wave
heights and long periods; see Dietrich et al. (2013).

Yet the value of cθ in the shallowest grid point can be simply too large due to a large
difference in bottom levels over one mesh width, so that wave energy will change direction
over more than some directional bins or even the directional sector, so that wave rays
falsely intersect each other. To prevent this artefact a limitation on cθ seems to be justified.
Recalling Eq. (3.38), a limitation would be

|cθ| <
∆θ

∆T
.

We estimate the reciprocal of the elapsed time ∆T as a fraction of

1

∆t
+

cx
∆x

+
cy
∆y

and so,

|cθ| ≤ αθ∆θ

(
1

∆t
+
|cx|
∆x

+
|cy|
∆y

)
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with αθ a user-defined maximum Courant number, which is generally smaller than 1. (In
SWAN, the default value is αθ = 0.9.) Often the desired time step ∆t is such that the first
term between brackets can be safely neglected. This implies a slightly more restriction on
the turning rate and, in turn, a safety margin in the CFL condition, as follows

|cθ| ≤ αθ∆θ

(
|cx|
∆x

+
|cy|
∆y

)
. (3.41)

It must be stressed that this limitation may affect the solution locally depending on αθ.
In fact, we need to find a good estimate for cθ which solely depends on αθ. However, it is
unlikely that this measure affects the solution nearshore or on fine grids, since the turning
rate will not too much vary over one (spatial) step. This is an effective survival measure
in the sense that it prevents the excessive refraction without deteriorating the solution
elsewhere.

3.8.4 A historical overview of limitation on cθ

The problem with refraction showing some inaccurate results has been known for a long
time. This issue had received some attention by Nico Booij for the first time in November
1998. His basic idea to fix this problem is as follows. We consider a case with parallel
depth contours within one sector, see Figure 3.6. We assume that grid point (i, j) is in

(i,j−1)

(i−1,j) (i,j)

Figure 3.6: Geographic grid with parallel depth contours.

shallow water. The other two grid points (i− 1, j) and (i, j − 1) are in deeper water. Let
n be the coordinate along the wave rays. Then according to Snel’s law (Holthuijsen, 2007,
NOTE 7A, pg. 207), we have

dθ

dn
=

1

c

dc

dn
tan θ .

Here θ will be of the order of 45o. So, we get

dθ

dn
=

1

c

dc

dn
.
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The slope at grid point (i, j) determines the value of dθ/dn. In shallow water, c =
√
gh, so

dθ

dn
=

1

2h

dh

dn
.

This may be approximated as follows

dθ

dn
≈ 1

2hi,j

h∗ − hi,j

∆n

with h∗ the water depth in one of the neighbouring grid points (i− 1, j) and (i, j − 1). In
the numerical procedure dθ/dn is constant over a spatial step, so the change in direction
over a step is

dθ

dn
∆n =

h∗ − hi,j

2hi,j

.

In order to maintain stability the change of direction must remain below 90o. Consequently,
we obtain

h∗ − hi,j ≤ πhi,j .

In the program the factor π is replaced by a user-determined factor β. Hence, the depths
in surrounding grid points are reduced to βhi,j , if they are larger than this value. It should
be noted that this approach was outlined in an unpublished note. Our experience with
this approach is that it seems not effective enough.

3.8.5 The problem with refraction on coarse grids

Another issue is the accuracy with which the turning rate is computed on coarse grids. In
SWAN this turning rate is computed as follows (see also Eq. (3.40))

cθ =
σ

sinh 2kh

(
∂h

∂x
sin θ − ∂h

∂y
cos θ

)
(3.42)

Here, wave refraction can only be caused by depth variation. As an alternative, the turning
rate can be formulated in terms of phase velocity as follows (see Holthuijsen, 2007, pg. 210)

cθ = −
cg
c

∂c

∂m

or

cθ =
cg
c

(
∂c

∂x
sin θ − ∂c

∂y
cos θ

)
(3.43)

An advantage of this formula is that refraction due to mud (non-rigid seafloor) can be
included, which is implemented in SWAN version 41.01. Although these formulas are
identical, they differ in result due to numerics. The first one, Eq. (3.42), seems to be
rather inaccurate at relative coarse grids with steep bottom slopes. Experiments suggested
that Eq. (3.43) with coarse resolution yields results that are similar to those using Eq.
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(3.43) or Eq. (3.42) with high resolution. By contrast, approximation based on Eq. (3.42)
with coarse resolution yields considerably different − often inaccurate − result. Therefore,
Eq. (3.42) is replaced by Eq. (3.43) since version 41.01AB.

Till version 41.01A, the derivative ∂h/∂x or ∂c/∂x has been approximated using a first
order backward difference scheme, for both structured and unstructured grids,

∂c

∂x
≈ ci,j − ci−1,j

∆x

see Figure 3.4 for the used stencil. Note that grid point (i, j) is the shallowest one. This
approximation appeared to be rather inaccurate at coarse grids as well. Moreover, it can
also lead to non-physical asymmetry in turning rate, and therefore wave energy. Therefore,
since version 41.01AB, second order central differences are applied as follows

∂c

∂x
≈ ci+1,j − ci−1,j

2∆x

Hence, the refraction velocity, Eq. (3.43), is approximated in SWAN, using structured
grids, as follows

cθi,j =
cgi,j
ci,j

(
ci+1,j − ci−1,j

2∆x
sin θ − ci,j+1 − ci,j−1

2∆y
cos θ

)

Note that grid point (i, j) is the shallowest one and that the division by ci,j is not correct,
i.e. it is not consistent with the Snel’s law! It will overestimate the rate of turning.
This error becomes rather large when bottom slopes are exceptionally large so that wave
energy may turn over more than one directional bin. This justifies again the use of the
refraction limiter, Eq. (3.41). An appropriate upper bound is obtained with αθ = 0.9 that
particularly holds for relative long waves8. For shorter waves, a smaller upper bound may
be chosen (e.g. αθ = 0.5). However, one may choose a larger CFL upper bound. For
instance, referring to Figure 3.6, i.e. parallel depth contours within 90o, waves can not
turn more than 90o (in line with the Snel’s law), which implies αθ = 9, if ∆θ = 10o.

In case of unstructured grids, first order approximations for the gradient of depth or phase
velocity have been replaced by a more accurate formula based on the Green-Gauss formula
like Eq. (8.36).

3.9 Implementation of QC approximation

One observes that the phase-space equation (2.144)−(2.145) is formulated in (~x,~k)−space,
whereas SWAN operates in frequency-direction space. In particular due to the QC scat-
tering term that involves a Fourier transform from physical space to a wave number space,

8According to the Snel’s law a wave direction with respect to the normal of a coastline within a
directional bin ∆θ can not turn more than ∆θ.
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one should stick to the ~k−space in solving the governing equation for the statistics of the
wave field (as represented by the Wigner distribution). Examples of such an approach are
presented in Smit et al. (2015a) and Akrish et al. (2020).

Here, we take a different route by applying a transformation to (σ, θ)−space. We first
define the Wigner distribution in the frequency-direction space and subsequently trans-
form it to the ~k−space. Next, we compute the scattering term in the phase space using the
transformed Wigner spectrum, and lastly, the result is transformed back to the frequency-
direction space.

For the purpose of the implementation in SWAN we thus consider the following equation

∂W

∂t
+∇~x · [(~cg + ~u)W ] = J−1 Sqc (3.44)

withW (~x, t; σ, θ) the Wigner distribution in the appropriate spectral space and J = |~cg|/|~k|
the Jacobian. Note that for evaluating the source term Sqc(~x,~k) we thus priorly need to

compute W (~x, t;~k) = J W (~x, t; σ, θ).

It is important to note that the Wigner distribution extends the notion of the action density
spectrum N(~x, t; σ, θ) by means of the introduction of the cross correlations. It basically
implies conservation in the presence of ambient current. So for computing the spectral
moments and, in turn, the integral parameters (e.g. significant wave height and mean
period) one must consider the product σW with which the integration over spectral space
can be performed. Additionally, recall that W can take on negative values. This implies,
for example, that the conservative elimination approach as outlined in Section 3.2.4 should
not be applied because otherwise the moments will be wrongly computed. Note that by
definition,

∫ ∫
W (σ, θ)dσdθ > 0.

There are, however, a few issues that require attention. Below, we discuss each of these
issues in some more depth.

There may arise a problem of mapping the cross-variance contributions to the frequency
domain using the dispersion relation (2.3) (assuming for the moment no currents). Gen-
erally, such contributions do not obey the dispersion relation. This is relevant because
of the transformation from ~k−space to (σ, θ)−space, and vice versa. For instance, two

interacting waves ~k1 and ~k2 having the same frequency σ(|~k1|) = σ(|~k2|) = σ create a cross

contribution at frequency σ(|(~k1 +~k2)/2|) 6= σ, with the result that a mapping error occur

when one is transforming W (~k) to W (σ, θ). Although the cross correlations may thus be
aliased at offset frequencies, we expect that such aliasing errors would prove to be small
enough to be accepted (see also Appendix C of Smit et al., 2015b).

Another issue concerns the inclusion of the statistical effects of wave refraction and Doppler
shifting induced by medium variations in the source term Sqc. As a result, the modelling of
these wave processes do not appear explicitly as conventional transport terms in Eq. (3.44)
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(viz. the third and fourth terms of Eq. (2.16)). There are two reasons for this approach.
First, it circumvents the stiffness of the equation that otherwise would occur owing to
the relatively rapid variations in the medium, thus leading to unnecessary and excessive
resolution in the spectral space (Akrish et al., 2020). Second, by means of the local plane
approximation of Smit et al. (2015a) the refraction term ∇~x ω · ∇~k W could have been

extracted out of the integral in Eq. (2.145), which is, however, formulated in ~k−space
rather than in (σ, θ)−space. This would mean an additional error-prone coordinate map-
ping through the Jacobian transformation (and interpolation).

The quasi-coherent modelling of wave processes accounting for depth-induced wave break-
ing (Smit et al., 2015b) and nonlinear (triad) interactions (Smit and Janssen, 2016) are
not considered in the current QC framework. These developments are in progress.

With respect to the numerical implementation of Eq. (3.44), the left hand side is ap-
proximated in the usual way as outlined in Sections 3.2 and 3.3 or, in case of the use of
unstructured meshes, in Section 8.3. However, because of the interaction with small-scale
medium variations, the Wigner distribution can narrow and broaden rapidly during the
propagation in the physical space. Hence, it is recommended to apply at least second
order accuracy of spatial discretization to resolve the shoaling term. In case of structured
grids the SORDUP scheme (or the Stelling and Leendertse scheme for non-stationary runs)
should then be selected (see Section 3.2.1). In the same vein, a more accurate unstructured
mesh discretization would be preferred over the currently implemented first order upwind
finite difference scheme. The work on this extension is in progress.

The rest of this section addresses the details of implementation issues with respect to the
right hand side of Eq. (3.44). In this regard, we first define three discrete grids in the ~k−,
~x′− and ~q−spaces, respectively, and after this we provide an outline of the QC implement-
ation.

Evaluation of the QC scattering source term calls for a grid in ~k−space in which the ef-
fects of wave interference are resolved. The origin and the size of its wave number domain
D~k = {(kx, ky) | kx,0 ≤ kx ≤ kx,max, ky,0 ≤ ky ≤ ky,max} is determined by the transforma-
tion of the user-defined spectral (σ, θ)−domain (commonly defined as a directional sector).
Apart from this, the determination of the wave number grid spacing is a crucial factor as
explained in the following.

The coherent interference patterns in wave fields depend mainly on the nature of the me-
dium variations and the spectral width of the Wigner distribution. In particular, narrow-
banded wave groups entering shallow water with an uneven bottom can cause substantial
variations in the wave statistics over many wave lengths and, in turn, the wave field remains
thus correlated over such distances. Hence, to determine the importance of the coherent
effects and also the resolution of the wave number grid, knowledge of the spectral width of
the incident waves is required. In SWAN, it is computed as the standard deviation of the
incoming spectrum of the action density N(~k). The grid size as denoted by ∆k is then set
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to this standard deviation. In relation to this, the coherent length scale of the correlated
wave field is defined as Lc = 2π/∆k (Smit et al., 2015a). Note that the two-dimensional ~k
grid thus obtained is equidistant in both directions.

The computation of the QC source term also requires a discrete Fourier transform of ∆ω(~x′)
to obtain ∆ω̂(~q). To this end, the so-called coherent region in ~x′−space is defined as a
square with the origin in the center and, owing to its compact support, its side length is
half the correlation length, thus D~x′ = {(x′, y′) | − 1

4
Lc ≤ x′ ≤ 1

4
Lc, −1

4
Lc ≤ y′ ≤ 1

4
Lc}.

Furthermore, this domain is equipped with a grid consisting of (M +1)× (M +1) equally
spaced points separated by a distance ∆x′ = ∆y′ in each direction. The specification of
M will be discussed below.

We finally introduce the medium wave number domain D~q over which the integral of
Eq. (2.145) is to be performed. This domain is conjugated to D~x′ and, since the Nyquist
wave length is 2∆x′, it is truncated to {(qx, qy) | − qmax ≤ qx ≤ qmax, −qmax ≤ qy ≤ qmax}
with qmax = π/∆x′. This maximum scattering wave number can be set directly by the
user or, alternatively, prescribed as a multiple of the peak (or mean) wave number at the

wavemaker |~kp|, qmax = α |~kp| with α usually 0.5, 1 or 2.

The domain D~q is subsequently discretized into uniform grid of N ×N bins with grid size
∆q. We select ∆q = 2∆k so as to avoid interpolation errors in computing the convolu-
tion integral of Eq. (2.145). Consequently, N = qmax/∆k. From the above we have that
M = 1

2
Lc/∆x′ = Lc qmax/2π = LcN ∆k/2π = N . So, there is a one-to-one mapping

between the grid of D~x′ and the grid of D~q, thus requiring no interpolation.

With the above definitions of discrete grids and their resolution, the discrete form of the
convolution integral and subsequently the QC scattering term (2.145) can be readily ob-
tained as follows

Sqc(x, y, kx, ky) = −i
qmax∑

qx=−qmax

qmax∑

qy=−qmax

[
∆σ̂ + ~k ·∆~̂u

− i

2

(
∆ĉg

~k

|~k|
+∆~̂u

)
· ∇~x

]
W (x, y, kx −

qx
2
, ky −

qy
2
) + c.c. (3.45)

with ∆σ̂, ∆ĉg and ∆~̂u the discrete Fourier transform of, respectively,

∆σ =W(x′)W(y′) [ σ(x+ x′, y + y′, kx, ky)− σ(x, y, kx, ky) ]

∆cg =W(x′)W(y′) [ cg(x+ x′, y + y′, kx, ky)− cg(x, y, kx, ky) ]

∆~u =W(x′)W(y′) [ ~u(x+ x′, y + y′)− ~u(x, y) ]

Here, W(z) is a window function which tapers the function to be transformed near the
boundaries of the z−interval (and so to reduce or possibly remove any jump discontinuity
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of the outcome). A standard Tukey window is utilized and is given by

W(z) =





1
2

{
1 + cos

(
π
[

z
ℓ γ
− 1

])}
, 0 ≤ z < ℓ γ

1, ℓ γ ≤ z ≤ (1− γ) ℓ

1
2

{
1 + cos

(
π
[
ℓ−z
ℓ γ
− 1

])}
, (1− γ) ℓ < z ≤ ℓ

with ℓ = Lc/2 the side of the square coherent zone centered at ~x and 0 ≤ γ ≤ 0.5 a
dimensionless taper parameter. In SWAN, it is set hardcoded to γ = 0.2.

As a final note on the implementation of the convolution sum (3.45), the differential oper-
ator∇~x W is discretized by means of second order central differences on structured grids. In
case of an unstructured mesh, the Green-Gauss theorem with the assumption of a constant
gradient over the centroid dual volume is then applied; viz. Eq. (8.35).

3.10 Governing equations in curvilinear co-ordinates

A curvilinear grid is characterized by the co-ordinates of the grid points, i.e.

xi,j , i = 1, ...,M , j = 1, ..., N (3.46)

yi,j , i = 1, ...,M , j = 1, ..., N (3.47)

The four-sweep method is unchanged, so in the first sweep action densities in the points
(i−1, j) and (i, j−1) are used to compute the action densities in the point (i, j). Numerical
approximations are obtained by a two-dimensional Taylor expansion with respect to the
point (xi,j , yi,j).

The differences in quantities between neighbouring grid points in the curvilinear grid are
denoted as follows

∆x1 = xi,j − xi−1,j , ∆y1 = yi,j − yi−1,j , ∆F1 = Fi,j − Fi−1,j (3.48)

and

∆x2 = xi,j − xi,j−1 , ∆y2 = yi,j − yi,j−1 , ∆F2 = Fi,j − Fi,j−1 (3.49)

The partial derivatives can be found from the two-dimensional Taylor expansions

∆F1 =
∂F

∂x
∆x1 +

∂F

∂y
∆y1 (3.50)

and

∆F2 =
∂F

∂x
∆x2 +

∂F

∂y
∆y2 (3.51)
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It follows that the partial derivatives can be approximated by

∂F

∂x
≈ ∆y2∆F1 −∆y1∆F2

[D]
(3.52)

and
∂F

∂y
≈ ∆x1∆F2 −∆x2∆F1

[D]
(3.53)

where
[D] = ∆y2∆x1 −∆y1∆x2 (3.54)

Thus, in curvilinear co-ordinates the complete propagation terms (including time-derivative,
but ignoring dependence on σ and θ temporarily) read

(
1

∆t
+ (Dx,1 +Dx,2)c

+
x,i,j + (Dy,1 +Dy,2)c

+
y,i,j

)
N+

i,j

−N−
i,j

∆t
−Dx,1(cxN)+i−1,j −Dy,1(cyN)+i−1,j

−Dx,2(cxN)+i,j−1 −Dy,2(cyN)+i,j−1 = S+
i,j (3.55)

where

Dx,1 =
∆y2
[D]

, Dy,1 = −
∆x2

[D]
, Dx,2 = −

∆y1
[D]

, Dy,2 =
∆x1

[D]
(3.56)

Here, the superscript + denotes the new time level t, and − the old time level t−∆t. The
equation for a stationary computation is found by putting 1/∆t to 0.

Again, the marching method is stable as long as the propagation direction towards the
point (i, j) is enclosed between the lines connecting this point with its neighbours (i−1, j)
and (i, j − 1). It can be shown that this is the case if

Dx,1cx +Dy,1cy ≥ 0 and Dx,2cx +Dy,2cy ≥ 0 (3.57)

This set of criterions enables the SWAN program to decide whether a certain spectral
direction does belong in the sweep which is being processed (in this the first sweep).

In the second sweep, ∆x1 = xi,j − xi,j−1, etc. and ∆x2 = xi,j − xi+1,j , etc. In the
third sweep, ∆x1 = xi,j − xi+1,j , etc. and ∆x2 = xi,j − xi,j+1, etc. In the fourth sweep,
∆x1 = xi,j − xi,j+1, etc. and ∆x2 = xi,j − xi−1,j , etc. Otherwise, all of the above equations
and conditions remain the same.

Conservation of action in the numerical approximation can be demonstrated for the triangle
of which the corners are the three points (i, j), (i− 1, j) and (i, j − 1). If for each side of
this triangle the energy flux is computed as the inner product of the average of cN and
an inward-pointing normal of the side itself, then the three energy fluxes are exactly in
balance assuming that the situation is stationary, and the source term is zero. In this case
it is found that

[cxN ]+i,j (∆y2 −∆y1) + [cxN ]+i−1,j (−∆y2) + [cxN ]+i,j−1 (∆y1) +

[cyN ]+i,j (∆x1 −∆x2) + [cyN ]+i−1,j (∆x2) + [cyN ]+i,j−1 (−∆x1) = 0 (3.58)
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3.11 Computation of force in curvilinear co-ordinates

FORCE is the wave-driven stress, i.e. the force per unit surface driving the wave-driven
current, expressed in N/m2, is defined as the derivative of the radiation stresses

Sxx = ρg
∫
⌊n cos2 θ + n− 1

2
⌋Edσdθ (3.59)

Sxy = Syx = ρg
∫

n sin θ cos θEdσdθ (3.60)

Syy = ρg
∫
⌊n sin2 θ + n− 1

2
⌋Edσdθ (3.61)

Here, n is the ratio of group velocity and phase velocity, that is,

n =
cgk

ω
(3.62)

The force is then

Fx = −∂Sxx

∂x
− ∂Sxy

∂y
(3.63)

and

Fy = −
∂Syx

∂x
− ∂Syy

∂y
(3.64)

In order to compute the force, the derivative of the radiation stress tensor has to be taken.
Let f be one of the components of the tensor. We have to derive expressions for ∂f/∂x
and ∂f/∂y. Derivatives with respect to the computational grid co-ordinates ξ and η can
easily be found. The transformation is based on

∂f

∂ξ
=

∂f

∂x

∂x

∂ξ
+

∂f

∂y

∂y

∂ξ
(3.65)

and
∂f

∂η
=

∂f

∂x

∂x

∂η
+

∂f

∂y

∂y

∂η
(3.66)

Hence,

∂f

∂x
=

∂f
∂ξ

∂y
∂η
− ∂f

∂η
∂y
∂ξ

∂x
∂ξ

∂y
∂η
− ∂x

∂η
∂y
∂ξ

=
∂f

∂ξ

∂ξ

∂x
+

∂f

∂η

∂η

∂x
(3.67)

and
∂f

∂y
=

∂f
∂ξ

∂x
∂η
− ∂f

∂η
∂x
∂ξ

∂y
∂ξ

∂x
∂η
− ∂y

∂η
∂x
∂ξ

=
∂f

∂ξ

∂ξ

∂y
+

∂f

∂η

∂η

∂y
(3.68)

Numerical approximations are quite simple:

∂f

∂ξ
≈ fξ+1,η − fξ−1,η

2
,

∂f

∂η
≈ fξ,η+1 − fξ,η−1

2
(3.69)

These expressions are also used for derivatives of x and y. On the boundaries of the
computational region a one-sided approximation can be used.
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3.12 Numerical treatment of obstacles

An obstacle is treated in SWAN as a line running through the computational grid, see
Figure 3.7. When treating one grid point SWAN will first determine whether one of the
grid lines of the stencil crosses an obstacle; see Section 3.13 for the procedure to determine
whether or not there is a crossing point. If there is a crossing it will fall back to the first
order upwind scheme.

Figure 3.7: An obstacle as a line in computational grid.

In computing the action densities for the target grid point (point 0 in Figure 3.8), the
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Figure 3.8: Schematic sketch of transmission in SWAN.

contribution of a neighbouring grid point (point 1 in this case) is reduced by K2
t , if the

connection between the two grid points crosses the obstacle. (Note that the power 2 comes
from the definition of the transmission coefficient which is in terms of wave height). The
contribution from point 2 in the computation of point 0 is not reduced because there is no
obstacle crossing in between; the program takes Kt = 1 for this point.
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A consequence of the above procedure is that the results are the same as long as the
obstacle crosses the same grid lines. Thus the results for the situation shown would be
the same if the obstacle would be longer as long as the end would be in the same mesh.
Another consequence is that an obstacle has to cross at least a few grid lines in order to
have a noticeable effect, see Figure 3.7.

After the transmission coefficient has been calculated, it is used in the propagation terms of
the action balance equation. In curvilinear coordinates, the propagation terms (including
time-derivative, but ignoring dependence on σ and θ temporarily) read

(
1

∆t
+ (Dx,1 +Dx,2)c

+
x,i,j + (Dy,1 +Dy,2)c

+
y,i,j

)
N+

i,j

−N−
i,j

∆t
−Dx,1(cxK

2
t,1N)+i−1,j −Dy,1(cyK

2
t,1N)+i−1,j

−Dx,2(cxK
2
t,2N)+i,j−1 −Dy,2(cyK

2
t,2N)+i,j−1 = S+

i,j (3.70)

In order to simplify the procedure, a reflected wave in a grid point is calculated from the
incident wave components in the same grid point. This introduces numerical inaccuracies,
but that is not uncommon in numerical models. A basic condition in numerical models is
that the approximation approaches the correct limit as smaller and smaller step sizes are
used.

A reflected wave component in the target grid point 0, as illustrated by the arrow pointing
away from the obstacle in Figure 3.9, would get contributions from grid points 1 and 2 if
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Figure 3.9: Schematic sketch of reflection in SWAN.

there would not be an obstacle. If the obstacle is there in the way shown, the contribution
from point 2 is unchanged, but the contribution from point 1 is

• reduced by a transmission coefficient and
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• partially replaced by the reflection of an incoming component in point 0.

Reflection only works when both grid points 0 and 1, as shown in Figure 3.9, are wet
points. This implies that obstacle lines are only effective when bordered by wet points on
both sides of the obstacle.

3.13 Crossing of obstacle and grid line

In the procedure for obstacles it is necessary to determine the crossing point of the obstacle
and a grid line in the computational grid. The obstacle is composed of straight sides. Let
one side have the end points ~x3 = (x3, y3) and ~x4 = (x4, y4). The end points of the grid
line (both computational grid points) are ~x1 = (x1, y1) and ~x2 = (x2, y2). The crossing
point must obey the following equation

~x1 + λ(~x2 − ~x1) = ~x3 + µ(~x4 − ~x3) (3.71)

where both λ and µ must be between 0 and 1. It follows that

λ =
(x1 − x3)(y2 − y1)− (y1 − y3)(x2 − x1)

(x4 − x3)(y2 − y1)− (y4 − y3)(x2 − x1)
(3.72)

and

µ =
(x1 − x3)(y4 − y3)− (y1 − y3)(x4 − x3)

(x4 − x3)(y2 − y1)− (y4 − y3)(x2 − x1)
(3.73)

If the denominator in both expressions is zero, the two lines are parallel and it is assumed
that there is no crossing.

3.14 Integration over σ

Two methods are considered in SWAN for integration over frequency space. The first
method is the common trapezoidal rule. We consider the following integration

I =
∫ σm

0
f E(σ)dσ (3.74)

where σm is the highest spectral frequency and f is an arbitrary function. Usually, this
function may be σp, ωp or kp with p a power. We assume a discrete (logarithmic) distri-
bution of frequencies: σi , i = 1, ...,m. The approximation of (3.74) is as follows

I ≈
m∑

2

1

2
(fi−1σi−1Ni−1 + fiσiNi)(σi − σi−1) (3.75)

The contribution by the tail needs to be added as well, as follows. The tail of the energy
density is proportional to σ−P ∗

. We have,

∫ ∞

σm

Rσ−P ∗

dσ = σm
Rσ−P ∗

m

P ∗ − 1
(3.76)
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Assuming that a function f has a tail with power P ∗, so that Rσ−P ∗

m = f(σm). Hence,
∫ ∞

σm

f(σ)dσ =
σm

P ∗ − 1
f(σm) (3.77)

This integration is only valid if P ∗ > 1.

The second technique for integration over σ makes use of the logarithmic discrete distribu-
tion of frequencies. We introduced two variables in SWAN: FRINTF and FRINTH. The first

is equal to ln(σi+1/σi), the latter to
√
σi+1/σi. Hence, σi = eµi with µ = ln(σi+1/σi) and

can be approximated as µ = ∆σ/σ.

The integral over a function of σ, i.e. f(σ) is transformed as follows
∫
f(σ)dσ =

∫
f(σ)µeµidi = µ

∫
f(σ)σdi (3.78)

Thus, the integral can be approximated as
∫
f(σ)dσ ≈ µ

∑
fiσi (3.79)

The boundaries of a mesh in σ−space are σi/
√
σi+1/σi and σi

√
σi+1/σi.

Computation of the contribution by the tail is done as follows. It is assumed that in the tail
the energy density is proportional to σ−P ∗

. Furthermore, the discrete integration extends

to M · σm, where M =
√
1 + ∆σ/σ. Then the contribution by the tail is

∫ 2π

θ=0

∫ ∞

Mσm

Rσ−P ∗

dσdθ = R
M1−P ∗ · σ1−P ∗

m

P ∗ − 1
=

σm

(P ∗ − 1)MP ∗−1
Rσ−P ∗

m (3.80)

Assuming that a function f has a tail with power P ∗, the integral over f has a tail
contribution of ∫ 2π

θ=0

∫ ∞

Mσm

f(σ)dσdθ =
σm

(P ∗ − 1)MP ∗−1
f(σm) (3.81)

Since, M is close to 1, the tail factor can be approximated as

σm

(P ∗ − 1)MP ∗−1
≈ σm

(P ∗ − 1)(1 + (P ∗ − 1)(M − 1))
(3.82)

In the SWAN program, we have M =FRINTH, P ∗ =PWTAIL(1) and m =MSC. The value
of P ∗ depends on the quantity that is integrated. For instance, in the computation of k,
P ∗ = P − 2n− 1. Note that it is required that P ∗ > 1, otherwise the integration fails.

3.15 Transformation from relative to absolute frequency

Internally, SWAN use action density as function of direction and relative (angular) fre-
quency. Users may want to obtain results in terms of absolute frequency, if only because



Numerical approaches 105

measurements were taken at fixed positions.

Two modifications of the SWAN model that were needed to supply the information to the
users are

• the computation of integrated quantities such as average absolute frequency and

• the transformation of action or energy density.

The average absolute frequency is determined as follows

ω =

∫
ωE(σ, θ)dσdθ
∫
E(σ, θ)dσdθ

(3.83)

The transformation of action or energy density from relative frequency σ to absolute fre-
quency ω is complicated because the mapping is not one-to-one, and therefore the Jacobian
can become infinite. The value of ω is determined by ω = W (σ).

The transformation is designed such that the following requirements are met.

• If current velocities tend to zero the action densities for absolute frequency become
identical with the densities with respect to relative frequency.

• The total energy density with respect to relative density is identical with the total
energy density with respect to absolute density.

Furthermore, it is assumed that the distribution of absolute frequencies is the same as the
distribution of relative frequencies.

In the continuous model the mapping is done by

E(ω, θ) =
∫
E(σ, θ)δ(ω −W (σ))dσ (3.84)

This relation is discretized whereby the energy density is assumed to be constant over
intervals from σi/M to Mσi.

3.16 Interpolation of spectra

The interpolation of spectra in SWAN, both in space and time, is a slight modification
of the procedure as used in WAM. This procedure is not a simple (spectral) bin-by-bin
interpolation because that would cause reduction of the spectral peak if the peaks of the
original spectra do not coincide. It is an interpolation where the spectra are first normalized
by average frequency and direction, then interpolated and then transformed back.

The average frequencies of the two origin spectra are determined using the frequency
moments of the spectra

mi,k =
∫

Ni(σ, θ)σ
kdσdθ (3.85)
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with i=1,2 (the two origin spectra) and k=0,1 (the zero- and first frequency moments of
these spectra). Then

σi =
mi,1

mi,0

(3.86)

The average frequency for the interpolated spectrum is calculated as

σ = (w2m1,1 + w1m2,1)/(w2m1,0 + w1m2,0) (3.87)

where w1 is the relative distance (in space or time) from the interpolated spectrum to the
first origin spectrum N1(σ, θ) and w2 is the same for the second origin spectrum N2(σ, θ).
Obviously, w1 + w2 = 1.

The average directions of the two origin spectra are determined using directional moments
of the spectra:

mi,x =
∫
Ni(σ, θ) cos(θ)dσdθ (3.88)

and
mi,y =

∫
Ni(σ, θ) sin(θ)dσdθ (3.89)

with i=1,2. The average direction is then

θi = atan(
mi,y

mi,x

) (3.90)

The average direction of the interpolated spectrum is calculated as

θ = atan[
w2m1,y + w1m2,y

w2m1,x + w1m2,x

] (3.91)

Finally the interpolated spectrum is calculated as follows

N(σ, θ) = w2N1[σ1σ/σ, θ − (θ − θ1)] + w1N2[σ2σ/σ, θ − (θ − θ2)] (3.92)

3.17 Computation of breaking source term

The surf breaking dissipation of Battjes and Janssen (1978) reads

Dtot = −αBJQbσ̃
H2

max

8π
(3.93)

The surf breaking source term for each spectral bin i is

Si =
Dtot

Etot

Ei = D̃ Ei (3.94)

with the normalized total dissipation

D̃ = −αBJσ̃Qb

πB < 0 (3.95)



Numerical approaches 107

and

B =
8Etot

H2
max

=

(
Hrms

γd

)2

(3.96)

Since, the source term is strongly nonlinear in E (since D̃ depends on E through B), we
apply the Newton linearisation to approximate the source term at iteration level n+ 1, as
follows

Sn+1
i ≈ D̃En

i +

(
∂S

∂E

)n

i

(En+1
i − En

i ) (3.97)

In SWAN, this approximation has been slightly adapted for reasons of numerical stability;
the first term in the right hand side, D̃En

i , is replaced by D̃En+1
i . This preserves positivity

of energy density E, if the following inequality holds

∂S

∂E
< 0 (3.98)

We derive an expression for this derivative as follows. From (3.94), we have

∂S

∂E
|i =

∂D̃

∂E
|iEi + D̃ (3.99)

The normalized dissipation D̃ is a function of B which is proportional to E, so

∂S

∂E
|i =

∂D̃

∂B |iBi + D̃ (3.100)

Since, Qb is a function of B, we get (using the quotient rule)

∂S

∂E
|i = −

αBJσ̃

π

∂Qb

∂B (3.101)

Since,
1−Qb + B lnQb = 0 (3.102)

the derivative of Qb is found by differentiating this with respect to B:

−Q′
b + lnQb +

B
Qb

Q′
b = 0 (3.103)

Hence,

Q′
b =

lnQb

1− B/Qb

=
Qb

B
Qb − 1

Qb − B
(3.104)

using Eq. (3.102). Now, Q′
b > 0, because 0 < Qb < 1 and B > Qb. Substitution in (3.101)

gives
∂S

∂E
|i = D̃

Qb − 1

Qb − B
|i < 0 (3.105)

Finally, the approximation of the source term reads

Sn+1
i = D̃

(
1 +

Qb − 1

Qb − B

)n

i

En+1
i − D̃

Qb − 1

Qb − B
|ni En

i (3.106)
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Chapter 4

Wave boundary and initial conditions

To obtain the numerical solution of the action balance equation (2.16), the wave boundary
and initial conditions should be provided. The incoming wave components at the up-wave
boundaries in the SWAN model are specified by a two-dimensional spectrum. Several
options are available:

• A parametric one-dimensional spectrum with a certain imposed directional distribu-
tion. An example is a Jonswap spectrum.

• A discrete one-dimensional spectrum with a certain imposed directional distribution.
This is often obtained from measurements.

• A discret two-dimensional spectrum. This may be obtained from other SWAN runs
or other models, e.g. WAM and WAVEWATCH III.

For the parametric one-dimensional spectrum, the following optional forms have been re-
commended: a Pierson-Moskowitz spectrum (Pierson and Moskowitz, 1964), a Jonswap
spectrum (Hasselmann et al., 1973) and a Gaussian-shaped spectrum.

The boundaries in frequency space are fully absorbing at the lowest and the highest dis-
crete frequency. So, energy can freely propagate across these boundaries and thus total
energy might not be conserved in some cases. However, a diagnostic tail f−m (m = 4 or
m = 5) is added above the high frequency cut-off, which is used to compute nonlinear
wave-wave interactions at the high frequencies and to compute integral wave parameters.
When the directional space is a closed circular, no directional boundary conditions are
needed. However, for reasons of economy, SWAN has an option to compute only wave
components in a pre-defined directional sector. In this case, the boundaries of this sector
are fully absorbing (action density might be removed from the model by refraction).

To facilitate the integration process of the action balance equation, wave boundary con-
ditions in geographical space need to be provided. The boundaries of the computational
grid in SWAN are either land or water. In case of land there is no problem. The land does
not generate waves and in SWAN it absorbs all incoming wave energy. But in the case of
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a water boundary there is a problem. If observations are available, they can be used as
inputs at the boundary. In case no wave conditions are given along the boundary, SWAN
assumes that no waves enter the model and waves can leave the model freely along that
boundary. This assumption results in errors. Therefore, to get reliable results, especially
for such case, the model boundaries must be placed far away from the area of interest.

In case of nonstationary computation, the default initial spectra are computed from the
local wind velocities using the deep-water growth curve of Kahma and Calkoen (1992), cut
off at values of significant wave height and peak frequency from Pierson and Moskowitz
(1964). The average (over the model area) spatial step size is used as fetch with local
wind. The shape of the spectrum is default Jonswap with a cos2(θ) directional distribution
centred around the local wind direction.

The first guess conditions of a stationary run of SWAN are default determined with the
second generation mode of SWAN.

It is possible to obtain an initial state by carrying out a previous stationary or nonstation-
ary computation.
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Implementation of 2D wave setup

5.1 Introduction

Wave setup is usually confined to narrow zones in the immediate vicinity of the shoreline.
The size of such areas is small enough that the setup process can be considered to be
quasi-stationary. Wave-induced currents are usually weak compared to tidal currents. This
implies an equilibrium between the wave-induced force and gradient of the wave setup,

gd

(
∂ζ

∂x
+

∂ζ

∂y

)
+ Fx + Fy = 0 (5.1)

where ζ is the setup, d the water depth and Fi is the wave-induced force in xi-direction
per unit mass. In order to reduce the number of equations to one, we use the observation
by Dingemans (1997) that wave-driven currents are mainly due to the divergence-free part
of the wave forces whereas the setup is mainly due to the rotation-free part of the force
field. We therefore take the divergence of eq. (5.1) to obtain the following elliptic partial
differential equation for ζ,

∂

∂x
(gd

∂ζ

∂x
) +

∂

∂y
(gd

∂ζ

∂y
) +

∂Fx

∂x
+

∂Fy

∂y
= 0 (5.2)

This Poisson equation needs one boundary condition in each point of the boundary of the
computational domain. Two types of boundary conditions are foreseen; the first one is
used on the open boundaries and on the shoreline where the shoreline is defined as the line
where the depth is zero:

Fn + gd
∂ζ

∂n
= 0 (5.3)

with n the outward direct normal. It is not possible to use this boundary condition on
all boundary points because then there remains an unknown constant. So some point for
which we take the boundary point with the largest depth, the setup is assumed to be ζ = 0.

The second type of boundary condition with given value of ζ is also used in nested models.
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The setup computed in the larger model is used as boundary condition in the nested model.
In the nested model the setup is given in all points of the outer boundary. On the shoreline
inside the area again eq. (5.3) is used.

The Poisson equation (5.2) together with its boundary conditions will be solved numerically
on a curvilinear grid. The next section discusses the details of the method. After each
iteration performed in SWAN new values of the setup are being calculated and added to
the depth, so that the SWAN model incorporates the effect of setup on the wave field. An
output quantity SETUP is added so that the user can be informed about the magnitude and
distribution of the wave setup.

5.2 Numerical approach

5.2.1 Discretization of the 2D setup equation

Problem definition

The equation to be solved has the following form:

∂

∂xk

(Fk + gd
∂ζ

∂xk

) = 0 , (5.4)

In order to solve (5.4), the following types of boundary conditions may be applied

Fn + gd
∂ζ

∂n
= 0 at the boundary , (5.5)

with n the outward direct normal. This is a Neumann condition. The setup is fixed upon
an additive constant.

ζ = given at the boundary . (5.6)

This is boundary condition of Dirichlet type. At beaches always the Neumann condition
(5.5) is applied.

In order to solve (5.4) with boundary conditions (5.5) and (5.6) a boundary fitted, vertex
centered finite volume method is applied. In the remainder of this Chapter we use k instead
of gd.

Discretization

The physical domain is mapped onto a rectangular domain in the (ξ1, ξ2) plane, which is
called the computational domain. All points of the domain are used, including the dry
ones.

Using the relation (summation convection applied)

∂ϕ

∂xβ
=

1√
g

∂

∂ξγ
(
√
g a

(γ)
β ϕ) , (5.7)
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with a
(γ)
β the components of the contravariant basevectors ~a(α) defined as

~a(α) = ∇ξα , (5.8)

and
√
g the Jacobian of the transformation

√
g = a1(1)a

2
(2) − a2(1)a

1
(2) . (5.9)

~a(α) are the covariant base vectors defined by

~a(α) =
∂~x

∂ξα
. (5.10)

The contravariant base vectors follow immediately from the covariant ones due to:

√
g~a(1) = (a2(2), −a1(2))T , (5.11)
√
g~a(2) = (−a2(1), a1(1))T . (5.12)

Application of (5.7) to equation (5.5) results in

1√
g

∂

∂ξα
(
√
g~a(α) · (k∇ζ + ~F )) = 0 . (5.13)

Note that ∇ζ is a derivative in the Cartesian (~x) direction and not in the ~ξ direction.

In the remainder we shall use the local numbering as given in Figure 5.1. The points (0,0),

(2, 2)

(2, 0)

(0, 1)

(0, 0) (1, 0)

(0, 2)

Figure 5.1: Local numbering in computational domain

(2,0), (0,2) and so on are the vertices of the cells. The integration cell for the finite volume
method is defined by the cell Ω (-1,0), (0,-1), (1,0), (0,1).
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Integrating (5.13) over this cell gives

∫

Ωx

1√
g

∂

∂ξα
(
√
g~a(α) · (k∇ζ + ~F ))dΩx

∫

Ωξ

∂

∂ξα
(
√
g~a(α) · (k∇ζ + ~F ))dΩξ (5.14)

≈ √g~a(1) · (k∇ζ + F )|(1,0)(−1,0) +
√
g~a(2) · (k∇ζ + ~F )|(0,1)(0,−1) ,

where Ωx is the cell in the physical space and Ωξ the cell in the computational domain.
The four points (1,0), (0,1), (-1,0) and (0,-1) will be cell integration points. The covariant
basis vectors ~a(α) are approximated by central differences

~a(2)|(0,1) = ~x(0,2) − ~x(0,0) , (5.15)

~a(1)|(1,0) = ~x(2,0) − ~x(0,0) , (5.16)

and by linear interpolation in other points. In these relations we have used that the step
width in the computational domain is equal to 1.
The term ∇ζ needs special attention. Since it concerns derivatives in the ~x direction,
whereas all derivatives in the computational domain are in the ~ξ directions it is necessary
to make some approximation. We approximate this term by the integration path method
as outlined in Wesseling (2001).

To that end ∇ζ is integrated in two independent directions ξ1 and ξ2. This yields two
equations to express ∂ζ

∂x
and ∂ζ

∂y
in ζ values of neighbours.

(~x2,0 − ~x),0)∇ζ|(1,0) = ζ2,0 − ζ0,0 , (5.17)

1

2
((~x2,2 − ~x2,−2) + (~x0,2 − ~x0,−2))∇ζ|(1,0) =

1

2
((ζ2,2 − ζ2,−2) + (ζ0,2 − ζ0,−2)) .(5.18)

(5.17), (5.18) may be considered as two sets of equations to express ∇ζ into ζ values.
Solution of this linear system results in:

∇ζ|(1,0) = ζ|(2,0)(0,0)~c
(1) + (ζ|(0,2)(0,−2) + ζ|(2,2)(2,−2))~c

(2) , (5.19)

with

~c1 =
1

C
(c2(2), −c1(2)) ; ~c2 =

1

C
(−c2(1), c1(1)) , (5.20)

C = c2(2)c
1
(1) − c2(1)c

1
(2) , (5.21)

~c(1) = a(1)|(1,0) ~c(2) = ~a(2)|(0,−1) + ~a(2)|(0,1) + ~a(2)|(2,−1) + ~a(2)|(2,1) . (5.22)

A similar formula is applied for point (0,1). Equation (5.14) together with expression (5.19)
gives one row of the discretized equation.
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Treatment of the boundary conditions

The boundary conditions at the outer boundary of the domain are relatively easy to im-
plement.

In case of Dirichlet boundary conditions the corresponding row of the matrix is made equal
to 0 and the diagonal element is set to 1. The value of the boundary condition is filled into
the right hand side.

Neumann boundary conditions are treated integrating over a half cell as sketched in Fig-
ure 5.2. In this case we get:

(0, 0)

(0, 1)

(-1, 0) (1, 0)

Figure 5.2: Half cell at boundary

∫

Ωξ

∂

∂ξα
(
√
g~a(α) · (k∇ζ + ~F )dΩξ

≃ 1

2

√
g~a(1) · (k∇ζ + ~F )|(1,0)(−1,0) +

√
g~a(2) · (k∇ζ + ~F )|(0,1)(0,0) . (5.23)

Due to the Neumann boundary conditions the term in the boundary point (0, 0) vanishes.

Mark that in this case we need to evaluate ∇ζ at the boundary. In order to do so we apply
a one-sided integration path approach i.e.

(~x(2,0) − ~x(1,0)) · ∇ζ|(1,0) = ζ(2,0) − ζ(0,0) ,

((x(2,2) − x(2,0)) + (~x(0,2) − ~x(0,0))) · ∇ζ|(1,0) = (ζ(0,2) − ζ(0,0)) + (ζ(2,2) − ζ(2,0)) .(5.24)

Furthermore we need the values of ~a(α) in virtual cells, because we need the c(α) at the
boundary. To that end we construct a row of virtual cells by extrapolating the co-ordinates
of the boundary cells.

The implementation of dry points

Dry points complicate the implementation considerably.

For the dry points itself there is no problem. In fact we make the corresponding row of
the matrix, as well as the right hand side element completely equal to zero.
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(0, 0)
(2, 0)

(0, 1)

(1, 0)(-1, 0)

(0, -1)

Figure 5.3: Dry point (2, 0) and wet point (0, 0)

Dry points in the neighbourhood of wet points, however, also influence the matrix for the
wet point. Consider for example the integration point (1,0) in Figure 5.3. If (0,0) is a
wet point and (2,0) a dry point then we assume that at point (1,0) we have a Neumann
boundary condition. This means in fact that the contribution of the integration point (1,0)
to the matrix and right hand side is equal to zero. With respect to the evaluation of the
gradient of ζ with the integration path method one sided differences are applied for those
formulas involving ζ(2,0). This process is applied for all transitions from wet to dry points.
As a consequence, in the case of a situation like in Figure 5.4 we make ∇ζ for point 2 zero.
The reason is that in point 2 it is only possible to evaluate ∂ζ

∂ξ1
and not ∂ζ

∂ξ2
, and hence we

2
1

Figure 5.4: Wet points • enclosed by a row of dry points ×

have too few information to express ∇ζ in neighbour values.

Building of the matrix and right hand side

With respect to the building of matrix and right hand side we start by computing all
contributions in the integration points. This is done by looping over the various integration
points. Since the contribution of point (0,1) in cell (i, j) is equal to that of point (0, -1) in
cell (i− 1, j) it is sufficient to loop over two sets of integration points only.
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Once we have computed the coefficients in a set of integration points we must add these
contributions, multiplied by some factor, to the matrix elements. This process is known
as distribution.

5.2.2 The iterative solver for the linear system

Data structure

After the discretization of the Poisson equation in curvilinear co-ordinates, one has to solve
the following matrix vector system:

Ax = f, (5.25)

where A is the discrete Poisson operator, x is an approximation of the setup (of the water
level), and the right hand side vector f contains the effects of the boundary conditions and
the forces due to the surface waves. In the solver it is very efficient to calculate with direct
addressing, so dry points are included in the vector x. This implies that the dimension of x
and f are fixed and equal to MXC×MYC. In the discretization a 9-point stencil is used.
That implies that only 9 matrix elements per row are non-zero. These elements are stored
in a diagonal-wise way. So for this part NWKARR = 9. The rows corresponding to dry
points are filled with zeroes except on the main diagonal where the value 1 is substituted.
The value of x and f are taken equal to 0 at these points.

Properties of the matrix

The discrete operator is symmetric in the inner region. This means that ai,j = aj,i. Due
to the boundary conditions the symmetry of the operator is lost. The reasons for this are:

• When Dirichlet boundary conditions are used the known elements of x should be
eliminated in order to keep the matrix symmetric. However this leads to a different
dimension of A, x, and f , therefore the known elements are not eliminated.

• When dry points occur the derivation of the discrete boundary conditions is already
complicated at the interface between wet and dry points. At this moment it is not
clear how to discretize these conditions such that the resulting matrix is symmetric.

These difficulties motivate us to use a non-symmetric matrix. This is only a small drawback,
because recently good methods have been developed to solve non-symmetric matrix vector
systems.

When Neumann conditions are used on all boundaries the resulting matrix is singular.
The solution is determined up to a constant. We have to keep this in mind during the
construction of the solution procedure.

When Gauss elimination is used to solve equation (5.25), the zero elements in the bend
of A become non-zero. This means that the required memory is equal to 2 ×MXC + 2
vectors. For MXC large, this leads to an unacceptable large amount of memory. Therefore
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we use an iterative solution method, where the total amount of memory is less than the
memory used in the discretization procedure.

The iterative solver

In 1D cases, the wave-induced set-up is calculated in SWAN with a simple trapezoidal rule.

In 2D cases, the Poisson equation of the divergence-free force field is solved in SWAN with
a modified Successive Over Relaxation (SOR) technique (Botta and Ellenbroek, 1985).
The boundary conditions for this elliptical partial differential equation are:

• at open boundaries: equilibrium between wave force and hydrostatic pressure gradi-
ent normal to the model boundary,

• at last grid points before shoreline: equilibrium between wave force and hydrostatic
pressure gradient normal to the model boundary and

• at deepest boundary point: set-up is zero.

The shoreline in SWAN moves as dictated by the wave-induced set-up. The set-up com-
putations are available in both the rectilinear and curvilinear grids.
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Iterative solvers

6.1 Strongly Implicit Procedure (SIP)

We want to solve the following linear system of equations

A ~N = ~b (6.1)

where A is some non-symmetric penta-diagonal matrix, ~N is the wave action vector to be
solved and ~b contains source terms and boundary values.

The basis for the SIP method (Stone, 1968; Ferziger and Perić, 1999) lies in the observation
that an LU decomposition is an excellent general purpose solver, which unfortunately can
not take advantage of the sparseness of a matrix. Secondly, in an iterative method, if
the matrix M = LU is a good approximation to the matrix A, rapid convergence results.
These observations lead to the idea of using an approximate LU factorization of A as the
iteration matrix M , i.e.:

M = LU = A+K (6.2)

where L and U are both sparse and K is small. For non-symmetric matrices the incomplete
LU (ILU) factorisation gives such an decomposition but unfortunately converges rather
slowly. In the ILU method one proceeds as in a standard LU decomposition. However, for
every element of the original matrix A that is zero the corresponding elements in L or U is
set to zero. This means that the product of LU will contain more nonzero diagonals than
the original matrix A. Therefore the matrix K must contain these extra diagonals as well
if Eq. (6.2) is to hold.

Stone reasoned that if the equations approximate an elliptic partial differential equation
the solution can be expected to be smooth. This means that the unknowns corresponding
to the extra diagonals can be approximated by interpolation of the surrounding points. By
allowing K to have more non zero entries on all seven diagonals and using the interpolation
mentioned above the SIP method constructs an LU factorization with the property that
for a given approximate solution φ the product Kφ ≈ 0 and thus the iteration matrix M
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is close to A by relation (6.2).

To solve the system of equations the following iterations is performed, starting with an
initial guess for the wave action vector ~N0 an iteration is performed solving:

U ~N s+1 = L−1 K ~N s + L−1~b (6.3)

Since the matrix U is upper triangular this equation is efficiently solved by back substitu-
tion. An essential property which makes the method feasible is that the matrix L is easily
invertible. This iterative process is repeated s = 0, 1, 2, ... until convergence is reached.

6.2 Successive Over Relaxation (SOR) technique

This section is under preparation. See also Botta and Ellenbroek (1985).
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Parallel implementation aspects

Domain decomposition methods have been successfully used for solving large sparse systems
arising from finite difference or finite volume methods in computational fluid dynamics on
distributed memory platforms. They are based, in essence, upon a partition of the whole
computational domain in ~x-space into a number of contiguous, non-overlapping subdo-
mains with each of them being assigned to a different processor. In this case the same
algorithm performs on all available processors and on its own set of data (known as the
SPMD programming model). Each subdomain can have multiple neighbors on each of its
four sides. For this, a data structure is implemented to store all the information about the
relationship of the subdomain and its particular neighbors. Next, each subdomain, look
in isolation, is then surrounded by an auxiliary layer of one to three grid points origin-
ating from neighbouring subdomains. This layer is used to store the so-called halo data
from neighbouring subdomains that are needed for the solution within the subdomain in
question. The choice of one, two or three grid points depends on the use of propagation
scheme in geographical space, i.e., respectively, BSBT, SORDUP or Stelling/Leendertse.
Since, each processor needs data that resides in other neighbouring subdomains, exchange
of data across boundaries of subdomains is necessary. Moreover, to evaluate the stopping
criterion (3.22), global communication is required. These message passings are implemen-
ted by a high level communication library such as MPI standard. A popular distribution
is MPICH which is free software1 and is used in the present study. Only simple point-to-
point and collective communications have been employed. There are, however, some other
implementation and algorithmic issues that need to be addressed.

7.1 Load balancing

The mapping of subdomains on processors should be chosen so as to distribute the compu-
tational load as equally as possible and to minimize the communication cost. Intuitively, it
will be clear that we have to allocate contiguous blocks of equal numbers of grid points on
each processor. However, in the context of SWAN applications to coastal areas, some dif-

1Available from http://www-unix.mcs.anl.gov/mpi/mpich.
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ficulties arise. Firstly, wet and dry grid points may unevenly distributed over subdomains
while no computations have to be done in dry points. Secondly, an unbalanced partition
may arise during the simulation due to the tidal effect (dry points become wet and vice
versa). In such a case, one may decide to adapt the partition such that it is balanced again
(so-called dynamic load balancing). Finally, most end-users are not willing to determine
the partitioning themselves, thus automatic support for partitioning the grids is desirable.

In the present study, two well-established partition methods are applied. The first is called
stripwise partitioning in which the computational grid is cut along one direction, resulting
in horizontal or vertical strips. The choice of cutting direction depends on the interface
size of the strips which should be minimized. However, the communication volume, which
is related to the total size of the interfaces, can be further reduced by means of recursive
application of alternately horizontal and vertical bisection. This is known as Recursive
Co-ordinate Bisection (RCB). Further details on these techniques and an overview on grid
partitioning can be found, e.g. in Fox (1988) and Chrisochoides et al. (1994). .

Within SWAN, the grid partitioning is carried out automatically on wet grid points only.
The size of the subdomain equals the total number of wet points divided by the total
number of subdomains. The implementation of a stripwise partitioning is as follows. First,
an empty strip is created. Next, assign point-by-point to the created part until the size of
that part has been reached. Thereafter, verify whether non-assigning wet points remain in
the current strip. If so, these points will be assign to the same part too, otherwise create
next empty strip. As a result, all strips have straight interfaces and include approximately
the same number of wet grid points. Moreover, experiences with SWAN simulation have
shown that the amount of computations in each wet grid point remains more or less con-
stant during the simulation and hence, there is no need for dynamic load balancing.

A final remark has to be made considering grid partitioning. The above described method-
ology does not seem to have been implemented in spectral wave models before. In Tolman
(20020, another way of distributing data over the processors is discussed: each pth wet
grid point is assign to the same processor with p the total number of processors. The
requirement of equal numbers of wet grid points per processor is provided automatically.
However, it is impossible to compute the spatial wave propagation in an effective manner.
The only alternative is to gather data for all grid points in a single processor before the
calculation is performed. This will require a full data transpose, i.e. rearranging data dis-
tribution over separate processors. It is believed that this technique requires much more
communication between processors than domain decomposition and therefore less suitable
for SWAN.

7.2 Parallelization of implicit propagation schemes

Contrary to explicit schemes, implicit ones are more difficult to parallelize, because of
the coupling introduced at subdomain interfaces. For example, concerning the four-sweep
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technique, during the first sweep, an update of N(i, j, l,m) can be carried out as soon as
N(i− 1, j, l,m) and N(i, j − 1, l,m) have been updated and thus it can not be performed
in parallel. Parallelization of this implicit scheme requires modifications. Ideally, the par-
allel algorithm need no more computing operations than the sequential one for the same
accuracy.

The simplest strategy to circumvent this problem consists in treating the data on sub-
domain interfaces explicitly, which in mathematical terms amounts to using a block Jac-
obi approximation of the implicit operator. In this context, we employ the RCB parti-
tion method, since it gives the required balanced, low-communication partitioning. This
strategy possess a high degree of parallelism, but may lead to a certain degradation of
convergence properties. However, this numerical overhead can be reduced by colouring
the subdomains with four different colors and subsequently permuting the numbering of
unknowns in four sweeps in accordance with the color of subdomains. Furthermore, each
subdomain is surrounded by subblocks of different colors. See Figure 7.1. As a result, each
coloured subdomain start with a different ordering of updates within the same sweep and

R R

R

Y

Y Y

Y

G

GG

B B

BB

R

G

Figure 7.1: Four types of subblocks (red, yellow, green and black) treated differently with
respect to the ordering of updates (indicated by arrows) per sweep.

thus reducing the number of synchronization points. This multicolor ordering technique
has been proposed earlier, e.g. in Meurant (1988) and Van der Vorst (1989).

Another strategy is based on the ideas proposed by Bastian and Horton (1991) and is
referred here to as the block wavefront approach. It is demonstrated with the following
example. First, we decompose the computational domain into a number of strips. In this
example, we assume that these strips are parallel to y−axis. Next, we start with the first
sweep. The processor belonging to the first strip updates the unknowns N(i, 1, l,m) along
the first row j = 1. Thereafter, communication takes place between this processor and
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processor for strip 2. The unknowns N(i, 2, l,m) along j = 2 in strip 1 and N(i, 1, l,m)
along j = 1 in strip 2 can be updated in parallel, and so on. After some start-up time
all processors are busy. This is depicted in Figure 7.2. Finally, this process is repeated
for the other three sweeps. Details can be found in the source code of SWAN. The block
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Figure 7.2: Application of block wavefront approach for the first 3 iterations during the first
sweep. Domain is divided into 3 vertical strips. Stars represent unknowns to be updated,
circles mean that unknowns are currently updated and the plus signs indicate unknowns
that have been updated.

wavefront approach does not alter the order of computing operations of the sequential
algorithm and thus preserving the convergence properties, but reduces parallel efficiency
to a lesser extent because of the serial start-up and shut-down phases (Amdahl’s law).
This technique resembles much to the standard wavefront technique applied in a pointwise
manner (unknowns on a diagonal are mutually independent and thus can be updated in
parallel; for details, see Templates (1994), which has also been employed by Campbell et
al. (2002) for parallelizing SWAN using OpenMP.

The performance of the two discussed parallelization methods applied in the SWAN model
has been discussed in (Zijlema, 2005). Numerical experiments have been run on a ded-
icated Beowulf cluster with a real-life application. They show that good speedups have
been achieved with the block wavefront approach, as long as the computational domain
is not divided into too thin slices. Moreover, it appears that this technique is sufficiently
scalable. Concerning the block Jacobi method, a considerable decline in performance has
been observed which is attributable to the numerical overhead arising from doubling the
number of iterations due to the relative weak stopping criteria as described in Section 3.3.
Furthermore, it may result in a solution that is computed to an accuracy that may not
be realistic. In conclusion, parallelization with the block wavefront technique has been
favoured and has been implemented in the current operational version of SWAN.

Since version 41.10 it is possible to employ the block Jacobi approach instead of the wave-
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front technique as an alternative (see the Implementation Manual how to activate this
approach). The user is however advised to apply the curvature-based termination cri-
terion, as described in Section 3.4. This will enhance the scalability significantly. This is
especially the case when the user runs a (quasi-)nonstationary simulation.

A survey of other alternatives to the parallelization of the implicit schemes is given in
Templates (1994).
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Unstructured mesh implementation

Since, the characteristic spatial scales of the wind waves propagating from deep to shallow
waters are very diverse, a flexible grid would be required to allow local refinement of
the mesh in areas of interest e.g., regions of strong bathymetry variations in estuaries
and fjords, without incurring overhead associated with grid adaptation at some distance
offshore. Traditionally, this can be achieved by employing a nesting technique. Although,
this practise is very common for SWAN, it is generally recognized that this may lead to
complicated programming with the corresponding significant increase in computational
effort.

The use of unstructured grids, however, offers a good alternative to nested models not
only because of the ease of local grid refinement, either adaptive or fixed, but also the
high flexibility to generate grids along coastline and around islands. The variable mesh is
especially useful in coastal regions where the water depth varies greatly. Thus, the variable
grid gives the highest resolution where it is most needed. Moreover, this can be automated
to a large extent. Although, the CPU cost per grid point is often relative higher than
cases with structured grids, this effect is probably more than offset by the reduction in the
number of grid points.

This chapter presents an unstructured grid procedure for SWAN. Details can also be found
in (Zijlema, 2009, 2010). The numerical propagation scheme for structured grids is based
on a four-direction Gauss-Seidel iteration technique and is accompanied by a fully implicit
temporal discretization; see Section 3.3. Hence, SWAN is stable for any time step. Because
of this nice property, this solution technique is tailored to unstructured grids.

8.1 Description of an unstructured grid

8.1.1 Definitions

We distinguish between two types of grids, namely structured and unstructured grids. A
two-dimensional structured grid may contain quadrilaterals. These can be rectilinear or
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curvilinear. The number of cells that meet each other in an internal vertex is always 4.
In unstructured meshes this restriction is abandoned. Moreover, 2D unstructured grids
usually consist of triangles or a combination of triangles and quadrilaterals, a so-called
hybrid grid. The unstructured meshes that we consider in SWAN consist solely of triangles,
also called cells. The edges of the triangles are called faces.

8.1.2 Relations between number of cells, vertices and faces

For a two-dimensional triangular mesh, the number of cells C, the number of boundary
faces Eb and internal faces Ei are related according to:

Eb + 2Ei = 3C (8.1)

The total number of faces E = Ei+Eb. With V the number of vertices and H the number
of holes (’islands’), we have the following Euler’s relation for a triangulation:

C + V − E = 1−H (8.2)

Usually, Eb << Ei and the number of holes H is negligibly small, so

C ≈ 2V , E ≈ 3V (8.3)

There are approximately twice as many cells as vertices in a triangular mesh. Therefore,
it is an optimal choice to locate the action density in vertices as the number of unknowns
is minimal on a given grid. Concerning the time-consuming evaluation of the physical
processes representing the wave energy generation, dissipation and redistribution, this
allows SWAN to save a considerable amount of computing time.

8.1.3 Conditions imposed to the grid

In order to avoid badly shaped grids, the grids must satisfy the following properties:

• The number of cells that meet at each vertex in the interior of the mesh must be at
least 4 and at most 10.

• The angles inside each triangle must be smaller than a certain value. Let ~a and ~b be
the tangential vectors of two faces of a triangle, then the angle φ between these two
faces equals

cosφ =
~a ·~b
|~a||~b|

(8.4)

For safety, we do not allow for angles with cosφ < −0.8 or, equivalently, φ > 143o.
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8.2 Some notes on grid generation

We briefly outline some issues related to grid generation from a practical point of view.
The process of grid generation can be difficult and time consuming. A common approach
is proceeding from coarse to fine grid through refinement in various ways. Generally, one
would like to have an optimal grid in which areas where the bathymetry or evolution of
the waves change rapidly require a higher resolution than areas where the physics or depth
changes less. This goes around by having an indication how to determine the refinement
based on bathymetry or geometric variations through preliminary evaluations. To facilitate
this procedure, many user-friendly mesh generation packages are available on the Internet.
In addition, there are public-domain, graphical Matlab and Python interfaces to Triangle
(Shewchuk, 1996). Triangle is a freely-distributed, two-dimensional Delaunay triangulator
and is widely utilized.

An important key ingredient for the preparation of the grid for the wave model domain
is bathymetry data. Boundary nodes, segments and holes can be created from this data
with the use of the mesh editing options of a mesh generation package. After checking
and improving grid quality, the final information on nodes and segments is forced into the
triangulation of the domain. This triangulation includes only acute triangles.

A good grid generator provides many pre-defined depth-dependent contraints for further
mesh refinement. From a numerical point of view, mesh refinement is often directly related
to properly resolve the shape of the wave, i.e. to keep the wavelength to grid size ratio
relatively large. When wavelength decreases in shallower water, the grid size must decrease
as well. Therefore, this criterion, called the h-refinement, has the effect of using smaller
cells in shallow water and larger cells in deeper water. Here, h refers to the water depth.
Another useful criterion is known as the topographic length scale constraint, when one
try to keep the ratio ∆h/h less than one. Here, ∆h equals the difference between the
maximum depth of a triangle and the minimum depth and h is the average depth. This
criterion addresses the bathymetric slope and cells with a high value of ∆h/h indicate areas
of steep bottom topography that will need to be more finely resolved. When refining the
grid, one must balance the need to fully meet the refinement criteria with the desire to
keep the triangle sizes from becoming too small. Thus, these criteria are generally imposed
along with a minimum area constraint. The refinement process is repeated iteratively until
a final grid with the appropriate resolution is obtained.

8.3 Numerical method

8.3.1 Discretization procedure

For the sake of clarity of the algorithm description below, we put all the terms but the
time derivative and propagation term in the geographical space of Eq. (2.16) in one term
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F (~x, σ, θ):
∂N

∂t
+∇~x · [~c~xN ] = F (8.5)

with ~c~x = ~cg + ~u the geographic velocity vector.

For the time being, we restrict ourselves to triangular meshes. However, other type of
meshes can be employed as well, e.g. hybrid grids (consisting of both triangles and quad-
rilaterals). We consider a triangulation of a geographical domain in which Eq. (8.5) is
solved; see Fig 8.1. Every vertex and all the triangles around this vertex are taken into

x

y

Figure 8.1: An example of triangulation.

account. Observe that the number of cells around a vertex can be different for all vertices.
A vertex-based scheme is used in which the wave action N is stored at the vertices and
Eq. (8.5) is solved in each vertex. We note that the values at boundary vertices are fixed
during the computation.

For the time integration, we adopt the first order implicit Euler scheme, as follows

Nn −Nn−1

∆t
+∇~x · [~c~xNn] = F n (8.6)

where ∆t is the time step and n is the time step counter. The main property of this
approximation is that it does not suffer from the stability restriction imposed by the CFL
condition inherent in the explicit methods as employed in most spectral models. In prin-
ciple, the time step is limited only by the desired temporal accuracy. This procedure,
however, involves the solution of a large system of equations.

A point-by-point multi-directional Gauss-Seidel iteration technique is employed for updat-
ing all grid vertices. A key feature of this technique is that it takes advantage of the newly
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acquired vertex values during an iteration. It is locally implicit but globally explicit. In
other words, it circumvents the need to build or store large matrices and remains stable
at any time steps. This means that this numerical procedure can converge to steady state
much more rapidly than explicit methods without requiring too much computational work
and memory as do implicit methods.

We consider the update of a vertex as labeled 1 in Figure 8.2. This involves looping over
each cell of this vertex. We want to find an approximation for the propagation term of

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

����
����
����

����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

1

2

3

e(1)

(2)e
θ

θ

2

1

x

y

= not updated
= to be updated
= updated

Figure 8.2: Update of the wave action at vertex 1 in a triangle △123 and the shaded
directional sector in spectral space for which the waves are propagated.

Eq. (8.6). To this end, we employ some vector calculus. We consider a triangular cell as

depicted in Figure 8.3. In vertex 1, we apply a mapping from a local coordinate system ~ξ
= (ξ,η) to the Cartesian one ~x = (x,y). Based on this transformation ~x(~ξ), we have the
following base vectors that are tangential to the coordinate lines ξ and η, respectively,

~e(1) =
∂~x

∂ξ
, ~e(2) =

∂~x

∂η
. (8.7)

The vectors
~e(1) = grad ξ , ~e(2) = grad η (8.8)

are normal to the coordinate surface of constant ξ and η, respectively (see Figure 8.3).
Moreover, they are reciprocal to the base vectors, i.e.

~e(α) · ~e(β) = δβα , α, β = {1, 2} , (8.9)

where δβα is Kronecker delta (which is unity if α = β, and zero otherwise). Using Cramer’s
rule, one can find

~e(1) =
1

D
(e2(2),−e1(2))⊤ , ~e(2) =

1

D
(−e2(1), e1(1))⊤ , D = e2(2)e

1
(1) − e2(1)e

1
(2) . (8.10)
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Figure 8.3: A triangular cell with geometrical quantities used for discretization in geo-
graphical space. Definitions of these quantities are provided in the text.

Next, we expand the propagation term of Eq. (8.6):

∇~x · [~c~xN ] =
∂cxN

∂x
+

∂cyN

∂y
, (8.11)

where cx and cy are the x− and y−components of the wave propagation vector ~c~x, respect-
ively. Using the chain rule, we obtain

∇~x · [~c~xN ] = e
(1)
1

∂cxN

∂ξ
+ e

(2)
1

∂cxN

∂η
+ e

(1)
2

∂cyN

∂ξ
+ e

(2)
2

∂cyN

∂η
. (8.12)

Further, we approximate the derivatives in Eq. (8.12). The most simplest one is a one-sided
first order difference scheme, as follows

∂cxN

∂ξ
≈ cxN1 − cxN2

∆ξ
,

∂cxN

∂η
≈ cxN1 − cxN3

∆η
,

∂cyN

∂ξ
≈ cyN1 − cyN2

∆ξ
,

∂cyN

∂η
≈ cyN1 − cyN3

∆η
, (8.13)

where the action densities at vertices 1, 2 and 3 are denoted by N1, N2 and N3, respectively.
Here, we choose the mapping ~x(~ξ) such that ∆ξ =∆η = 1. The approximation is completed
by substituting (8.13) in (8.12):

∇~x · [~c~xN ] ≈ cxN |12e
(1)
1 + cxN |13e

(2)
1 + cyN |12e

(1)
2 + cyN |13e

(2)
2 . (8.14)
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Note that the components of the vectors ~e(1) and ~e(2) in Eq. (8.14) are given by Eqs. (8.10),
while the base vectors are calculated according to

~e(1) = ~x1 − ~x2 , ~e(2) = ~x1 − ~x3 (8.15)

with ~xi = (xi, yi) the position vector of vertex i in a Cartesian coordinate system. This
space discretization is of lowest order accurate and conserves action (see Section 8.7).

The upwind difference scheme BSBT (8.14) is employed for three reasons. First, it is
compact, i.e. operating on one triangle only. Second, it enforces the propagation of wave
action to follow the characteristics. Hence, this scheme produces numerical diffusion along
these characteristics, and as such, it is multidimensional with a minimum amount of cross-
diffusion. Third, it is monotone, i.e. guaranteeing N > 0 everywhere. This finite difference
BSBT scheme appears to be identical to the well-known N(arrow) scheme, based on the
fluctuation splitting method, on regular, triangular grids obtained from triangulation of
rectangles with diagonals aligning with the wave characteristic as much as possible (see
Struijs, 1994, pp. 63-64). Hence, the BSBT scheme share with the N scheme in many
respects: it is multidimensional, first order accurate, optimal in terms of cross-diffusion,
monotone, conservative, narrow stencil and consistent with local wave characteristics (see
Section 3.2.1), but they are not identical in general.

Given the action densities Nn
2 and Nn

3 at vertices 2 and 3 of triangle △123, the wave action
in vertex 1 is readily determined according to

[
1

∆t
+ cx,1

(
e
(1)
1 + e

(2)
1

)
+ cy,1

(
e
(1)
2 + e

(2)
2

)]
Nn

1 =

Nn−1
1

∆t
+
(
cx,2e

(1)
1 + cy,2e

(1)
2

)
Nn

2 +
(
cx,3e

(2)
1 + cy,3e

(2)
2

)
Nn

3 + F n . (8.16)

The wave directions between faces ~e(1) and ~e(2) enclose all wave energy propagation in
between the corresponding directions θ1 and θ2 as indicated as a shaded sector in Figure 8.2.
This sector is the domain of dependence of Eq. (8.16) in vertex 1. Since, the wave
characteristics lie within this directional sector, this ensures that the CFL number used
will properly capture the propagation of wave action towards vertex 1. So, propagation
is in line with the causality principle and is not subjected to a CFL stability criterion.
Next, the term F n in Eq. (8.16) is discretized implicitly in the sector considered. Since
the approximation in the spectral space and the linearization of the source terms are well
explained in Section 3.3, we shall not pursue them any further. Eq. (8.16) constitute a
coupled set of linear, algebraic equations for all spectral bins within the sector considered
at vertex 1. The solution is found by means of an iterative solver; see Section 3.3 for
details.

The update of vertex 1 is completed when all surrounding cells have been treated. This
allows waves to transmit from all directions. Due to refraction and nonlinear interactions,
wave energy shifts in the spectral space from one directional sector to another. This is
taken into account properly by repeating the whole procedure with converging results.
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8.3.2 The sweeping algorithm

The solution of each vertex must be updated geographically before proceeding to the next
one. For example, referring to Figure 8.2, the value in vertex 1 is determined by its two
upwave vertices 2 and 3 only if they are already updated. In this way causality can be
preserved. For regular grids, the four-sweep scheme based on a four-direction Gauss-Seidel
relaxation is employed as outlined in Section 3.3. The grid points are ordered in a natural
manner, e.g. left to right and bottom to top during the first sweep, right to left and
bottom to top during the second sweep, and so on. Hence, the updated values will be used
immediately for updating the next unknown. However, in an unstructured mesh there
are no distinct directions. Thus the vertices are ordered by their numbering which for an
unstructured grid are quite random. As a consequence, the latest obtained solution will
not necessarily be used for updating surrounding vertices. Also, we select wave directions
in every triangular cell around a vertex for an update in spectral space. This selection
differs for each vertex.

An ordering is proposed such that the solution of each vertex will tend to ensure that
updated values from the surrounding vertices are used as soon as they are available. This
ordering of vertices is perpendicular to the main wave direction and thus along the wave
crests. Usually, the main wave direction is the direction of the incoming wave energy on
the imposed boundary or the wind direction. All the vertices are ordered according to their
distances to the origin of the grid in ascending order. It is expected that this so-called crest
ordering, by which we update along wave characteristics as much as possible, should result
in a faster convergence than a random ordering of vertices. This ordering is usually fine
for wind waves or swells propagating along rather straight wave characteristics. However,
it might be less efficient in case of waves propagated along (strong) curved wave rays (e.g.
around islands). In that case the iteration process is not effectively Gauss-Seidel. Like the
structured grid case, a fixed number of sweeps (not necessarily 4) is introduced. Each sweep
represents a range of wave directions that is equal to 2π divided by the number of sweeps.
As an illustrative example we choose 3 sweeps of each 120o. For each sweep the vertices
are ordered in line with the corresponding sweep direction. The first sweep direction is the
dominant wave direction, the second one equals the first one plus 120o and the last one
equals the first one minus 120o. Hence, we have three different ordering of vertices. This
will speed up the iteration process because propagation of wave energy in other directions
is covered as well. In general, the higher the number of sweeps, the smaller the directional
interval, the better the wave energy in various directions is captured in one series of sweeps,
the lesser the number of required iterations to obtain the steady-state convergence (see also
Section 3.5). However, by enhancing the number of sweeps, the amount of computations
will be increased as well and thus more computing intensive. Experiences have shown
that three sweeps is a good compromise between the reduced number of iterations and the
extended amount of required computation time.

An algorithm is employed that consists of simply proceeding through a list of vertices per
sweep that remain to be updated. This list is sorted according to the ascending distances
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of vertices to the origin of the grid in line with the sweep direction. This algorithm goes
along with an iteration process. Initially, all vertices are non-updated in both geographic
and spectral spaces. In each iteration, a number of sweeps through the vertices is executed,
while the solution of each vertex must be updated geographically before proceeding to the
next one. The two upwave faces connecting the vertex to be updated enclose those wave
directions that can be processed in the spectral space; see Figure 8.2. The solution of each
cell having a vertex as one of their vertices and (partly) enclosed by the present sweep must
be updated. The vertex is updated when all cells around this vertex have been considered.
As such, all wave directions can be covered efficiently. The process continues with the
next vertex in the list of non-updated vertices. A sweep is complete when all vertices are
updated geographically (but not necessarily in whole spectral space, e.g. due to refraction
and quadruplets). An iteration is complete when all sweeps have been carried out and so
all vertices are updated in both geographic and spectral spaces so that wave energy from
all directions has been propagated through geographical space. This numerical process
is iterated until an a priori convergence condition is satisfied. Here, the curvature-based
stopping criteria as outlined in Section 3.4 will be applied. The total number of iterations
depends mainly on local change in propagation direction due to bed changes and ambient
current, and possibly also on the domain size. See also Section 3.4 for further details.

8.4 Interpolation at user-defined locations

All the quantities deals with in SWAN are located at the vertices. Hence, due to the
user-defined locations of the wave parameters, interpolations are required. Let parameter
ϕj = ϕ(~xj) and Cartesian coordinates ~xj = (xj, yj), with j ∈ {1, 2, 3} indicating the
vertices of cell i, be given. The vertices 1, 2 and 3 are ordered in a counterclockwise
direction, see Figure 8.2. The associated 3 edges are denoted as 12, 23 and 31.

Linear interpolation, with ~x0 inside cell i and ϕ0 = ϕ(~x0), is given by

ϕ(~x) = ϕ0 +∇ϕ · (~x− ~x0) (8.17)

where ∇ϕ is a constant vector inside cell i. We apply Green-Gauss reconstruction, i.e.,

∇ϕ ≈ 1

Ai

∫

△i
∇ϕdΩ =

1

Ai

∮

∂△i
ϕ~ndΓ ≈ 1

Ai

∑

e

ϕe~ne (8.18)

where Ai is the area of cell i and the summation runs over the 3 edges e ∈ {12, 23, 31} of
cell i. The values ϕe at edges are taken as averages:

ϕ12 =
1

2
(ϕ1 + ϕ2) , ϕ23 =

1

2
(ϕ2 + ϕ3) , ϕ31 =

1

2
(ϕ3 + ϕ1) (8.19)

Furthermore, ~ne is the outward pointing normal at edge e and is obtained by rotating the
edge over 90o in the clockwise direction. Hence,

~n12 = R~t12 , R =

(
0 1
−1 0

)
, ~t12 = ~x2 − ~x1 (8.20)
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We also need the following identity

~n12 + ~n23 + ~n31 = 0 (8.21)

It is not difficult to show that

∇ϕ =
1

2Ai

[~n12(ϕ1 − ϕ3) + ~n31(ϕ1 − ϕ2)]

= − 1

2Ai

[ϕ1~n23 + ϕ2~n31 + ϕ3~n12] (8.22)

or
∂ϕ

∂x
=

1

2Ai

[ϕ1(y2 − y3) + ϕ2(y3 − y1) + ϕ3(y1 − y2)] (8.23)

and
∂ϕ

∂y
=

1

2Ai

[ϕ1(x3 − x2) + ϕ2(x1 − x3) + ϕ3(x2 − x1)] (8.24)

The area Ai of cell i is given by |~t12 · ~n13|/2. Hence, with

~n13 = R~t13 =

(
y3 − y1
x1 − x3

)
(8.25)

we have

Ai =
1

2
|(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)| (8.26)

Alternatively, we may interpolate using the following relation

ϕ(~x) =
∑

k

ϕkλk(~x) = ϕ1λ1 + ϕ2λ2 + ϕ3λ3 (8.27)

where λk is a linear shape function with the following properties:

1. λk is linear per cell and

2. λk(~xj) = δkj with δkj is the Kronecker delta.

We choose the following shape function

λk(~x) = ak0 + akxx+ akyy (8.28)

and the coefficients a follow from solving




1 x1 y1
1 x2 y2
1 x3 y3







a10 a20 a30
a1x a2x a3x
a1y a2y a3y


 =




1 0 0
0 1 0
0 0 1


 (8.29)
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8.5 Computation of wave-induced force

FORCE is the wave-driven stress, i.e. the force per unit surface driving the wave-driven
current, expressed in N/m2, is defined as the gradient of the radiation stresses:

Sxx = ρg
∫
⌊n cos2 θ + n− 1

2
⌋Edσdθ (8.30)

Sxy = Syx = ρg
∫

n sin θ cos θEdσdθ (8.31)

Syy = ρg
∫
⌊n sin2 θ + n− 1

2
⌋Edσdθ (8.32)

with n the ratio of group velocity and phase velocity. The force is then

Fx = −∂Sxx

∂x
− ∂Sxy

∂y
(8.33)

and

Fy = −
∂Syx

∂x
− ∂Syy

∂y
(8.34)

In order to compute the force in all internal vertices of the unstructured mesh, we consider
a control volume (CV) as depicted in Figure 8.4. This CV is called centroid dual and is
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Figure 8.4: Control volume (centroid dual) of vertex is shaded. Some notation is intro-
duced.

constructed by joining the centroids neighbouring the vertex under consideration. The set
of CVs must fill the whole computational domain and must also be non-overlapping. In
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the following we use the numbering from Figure 8.4. Let ϕ be one of the radiation stresses
Sxx, Sxy and Syy. The gradient of ϕ is computed as follows

∇ϕ ≈ 1

ACV

∑

e

ϕe~ne (8.35)

where ACV is the area of the CV and the summation runs over the associated edges e of
this CV. The values ϕe at edges of the centroid dual are taken as averages, i.e. (ϕ0+ϕ1)/2,
(ϕ1 + ϕ2)/2, etc. Moreover, the value of the radiation stresses inside each triangle is
simply the average of the radiation stresses in the associated vertices of the cell. Now, the
derivatives of ϕ inside CV are

∂ϕ

∂x
=

1

2ACV

n−1∑

i=0

(ϕi + ϕi+1) (yi+1 − yi) (8.36)

and
∂ϕ

∂y
=

1

2ACV

n−1∑

i=0

(ϕi + ϕi+1) (xi − xi+1) (8.37)

with n the number of surrounding cells of the considered vertex and ϕn = ϕ0, xn = x0 and
yn = y0. The area of the CV is given by

ACV =
1

2

n−1∑

i=0

(xi yi+1 − xi+1 yi) (8.38)

8.6 Calculation of diffusion-like terms

There are situations in which the following diffusion-like term need to be computed on
unstructured meshes:

∇ · (κ∇ϕ) (8.39)

in vertices with κ a space-varying diffusion coefficient (a tensor) and ϕ a scalar defined in
vertices. In SWAN, these are

• the alleviation of the garden-sprinkler effect; see Eq. (3.2.1), and

• the computation of the diffraction parameter; see Eq. (2.128).

We consider the centroid dual as shown in Figure 8.4. The calculation consists of 3 steps.
First, we compute the gradient of ϕ inside each surrounding cell using expressions (8.23)
and (8.24). Next, this gradient is multiplied by the appropriate diffusion coefficient κ as
given in the centroid. Finally, we compute the gradient of κ∇ϕ inside the CV according
to Eqs. (8.36) and (8.37).
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8.7 Conservation of action

In this section, we proof that the discretization Eq. (8.16) is energy conserving. For this,
we assume stationarity and neglect the source terms, so F = 0. From Eq. (8.16), it follows

~e(1) · (~c~xN)1 + ~e(2) · (~c~xN)1 = ~e(1) · (~c~xN)2 + ~e(2) · (~c~xN)3 (8.40)

On the other hand, we have

∇ · (~c~xN) =
1

Ω

∮
~c~xN · ~ndΓ (8.41)

The vectors ~c~xN at edges are taken as averages, and so (see Figure 8.3 for reference)

∇ · (~c~xN) ≈ 1

2Ω
[( (~c~xN)1 + (~c~xN)2 ) · ~n12 +

( (~c~xN)2 + (~c~xN)3 ) · ~n23 + ( (~c~xN)3 + (~c~xN)1 ) · ~n31] (8.42)

Using the identity
~n23 = −~n12 − ~n31 (8.43)

and
~n12 = −~e(2) , ~n31 = −~e(1) (8.44)

we have

∇ · (~c~xN) ≈ 1

2Ω
[~e(1) · (~c~xN)1 + ~e(2) · (~c~xN)1 − ~e(1) · (~c~xN)2 − ~e(2) · (~c~xN)3] = 0 (8.45)

If the situation is stationary and there are no source terms then the divergence term is
zero. Hence, the energy flux vector is divergence free. From this it follows that the closed
integral of the flux normal to the faces of the triangle is zero, i.e. source free, if the compact
BSBT scheme is applied. This also implies that the wave energy flux is constant along
any wave characteristic in between faces ~e(1) and ~e(2) (see Figure 8.2 for reference). The
BSBT scheme is thus consistent with local wave characteristics and can be viewed as a
semi-Lagrangian scheme. This also holds for non-uniform depth and ambient current.
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