Discretization

The physical domain is mapped onto a rectangular domain in the $(\xi^{1},
\xi^{2})$ plane, which is called the computational domain. All points of the domain are used, including the dry ones.


Using the relation (summation convection applied)


  $\displaystyle \frac{\partial \varphi}{\partial x^{\beta}} = \frac{1}{\sqrt{g}}
...
...{\partial}{\partial\xi^{\gamma}}(\sqrt{g}\; a^{(\gamma)}_{\beta}\;
\varphi)\;,
$ (5.7)



with $a^{(\gamma)}_{\beta}$ the components of the contravariant basevectors $\vec{a}^{(\alpha)}$ defined as


  $\displaystyle \vec{a}^{(\alpha)} = \nabla \xi^{\alpha}\;,
$ (5.8)



and $\sqrt{g}$ the Jacobian of the transformation


  $\displaystyle \sqrt{g} = a^{1}_{(1)} a^{2}_{(2)} - a^{2}_{(1)}a^{1}_{(2)}\;.
$ (5.9)



$\vec{a}_{(\alpha)}$ are the covariant base vectors defined by


  $\displaystyle \vec{a}_{(\alpha)} = \frac{\partial \vec{x}}{\partial \xi^{\alpha}} \; .
$ (5.10)



The contravariant base vectors follow immediately from the covariant ones due to:



$\displaystyle \sqrt{g}\vec{a}^{(1)}$ $\textstyle =$ $\displaystyle (a^{2}_{(2)}, \; -a^{1}_{(2)})^{T}\;,$ (5.11)
$\displaystyle \sqrt{g}\vec{a}^{(2)}$ $\textstyle =$ $\displaystyle (-a^{2}_{(1)}, \; a^{1}_{(1)})^{T}\;.$ (5.12)
Application of (5.7) to equation (5.5) results in


  $\displaystyle \frac{1}{\sqrt{g}} \frac{\partial}{\partial \xi^{\alpha}}(\sqrt{g}
\vec{a}^{(\alpha)} \cdot (k \nabla \zeta + \vec{F})) = 0\;.
$ (5.13)



Note that $\nabla \zeta$ is a derivative in the Cartesian $(\vec{x})$ direction and not in the $\vec{\xi}$ direction.


In the remainder we shall use the local numbering as given in Figure 5.1.
Figure 5.1: Local numbering in computational domain
\begin{figure}\centerline{\psfig{figure=fig1G.eps}}\end{figure}
The points (0,0), (2,0), (0,2) and so on are the vertices of the cells. The integration cell for the finite volume method is defined by the cell $\Omega$ (-1,0), (0,-1), (1,0), (0,1).


Integrating (5.13) over this cell gives



    $\displaystyle \int\limits_{\Omega_{x}} \frac{1}{\sqrt{g}} \frac{\partial}{\part...
...lpha}}(\sqrt{g} \vec{a}^{(\alpha)} \cdot (k \nabla \zeta +
\vec{F}))d\Omega_{x}$  
    $\displaystyle \int\limits_{\Omega_{\xi}} \frac{\partial}{\partial
\xi^{\alpha}}(\sqrt{g}\vec{a}^{(\alpha)} \cdot (k \nabla \zeta
+ \vec{F}))d\Omega_{\xi}$ (5.14)
    $\displaystyle \approx \sqrt{g}\vec{a}^{(1)} \cdot (k\nabla \zeta + F)\vert^{(1,...
...sqrt{g}\vec{a}^{(2)} \cdot (k \nabla \zeta + \vec{F})\vert^{(0,1)}_{(0,
-1)}\;,$  
where $\Omega_{x}$ is the cell in the physical space and $\Omega_{\xi}$ the cell in the computational domain.
The four points (1,0), (0,1), (-1,0) and (0,-1) will be cell integration points. The covariant basis vectors $\vec{a}_{(\alpha)}$ are approximated by central differences



$\displaystyle \vec{a}_{(2)}\vert _{(0,1)}$ $\textstyle =$ $\displaystyle \vec{x}_{(0, 2)} - \vec{x}_{(0,0)}\;,$ (5.15)
$\displaystyle \vec{a}_{(1)}\vert _{(1, 0)}$ $\textstyle =$ $\displaystyle \vec{x}_{(2,0)} - \vec{x}_{(0,0)}\;,$ (5.16)
and by linear interpolation in other points. In these relations we have used that the step width in the computational domain is equal to 1.
The term $\nabla \zeta$ needs special attention. Since it concerns derivatives in the $\vec{x}$ direction, whereas all derivatives in the computational domain are in the $\vec{\xi}$ directions it is necessary to make some approximation. We approximate this term by the integration path method as outlined in Wesseling (2001).


To that end $\nabla \zeta$ is integrated in two independent directions $\xi^{1}$ and $\xi^{2}$. This yields two equations to express $\frac{\partial \zeta}{\partial x}$ and $\frac{\partial \zeta}{\partial y}$ in $\zeta$ values of neighbours.



    $\displaystyle (\vec{x}_{2,0} - \vec{x}_{),0})\nabla \zeta\vert _{(1, 0)} = \zeta_{2,0} -
\zeta_{0,0}\;,$ (5.17)
    $\displaystyle \frac{1}{2}((\vec{x}_{2,2} - \vec{x}_{2,-2}) + (\vec{x}_{0,2} -
\...
...} = \frac{1}{2}((\zeta_{2,2} -
\zeta_{2,-2}) + (\zeta_{0,2} - \zeta_{0,-2}))\;.$ (5.18)
(5.17), (5.18) may be considered as two sets of equations to express $\nabla \zeta$ into $\zeta$ values. Solution of this linear system results in:


  $\displaystyle \nabla \zeta \vert _{(1,0)} = \zeta \vert^{(2,0)}_{(0,0)} \vec{c}...
...
(\zeta\vert^{(0,2)}_{(0, -2)} + \zeta \vert^{(2,2)}_{(2,-2)})\vec{c}^{(2)}\;,
$ (5.19)



with



$\displaystyle \vec{c}^{1}$ $\textstyle =$ $\displaystyle \frac{1}{C}(c^{2}_{(2)}, \; -c^{1}_{(2)})\; ; \; \vec{c}^{2} =
\frac{1}{C}(-c^{2}_{(1)}, \; c^{1}_{(1)})\;,$ (5.20)
$\displaystyle C$ $\textstyle =$ $\displaystyle c^{2}_{(2)}c^{1}_{(1)} - c^{2}_{(1)}c^{1}_{(2)}\;,$ (5.21)
$\displaystyle \vec{c}_{(1)}$ $\textstyle =$ $\displaystyle a_{(1)}\vert _{(1,0)}\; \; \vec{c}_{(2)} = \vec{a}_{(2)}\vert _{(...
...\vert _{(0,1)} + \vec{a}_{(2)}\vert _{(2, -1)} + \vec{a}_{(2)}\vert _{(2,1)}\;.$ (5.22)
A similar formula is applied for point (0,1). Equation (5.14) together with expression (5.19) gives one row of the discretized equation.
The SWAN team 2024-09-09